PNG (Portable Network Graphics) Specification
Version 1.0

For list of authors, see Credits (Chapter 19).

Status of this document

This document has been reviewed by W3C members and other interested parties and has been endorsed by
the Director as a W3C Recommendation. It is a stable document and may be used as reference materia or
cited asanormative reference from another document. W3C'’srolein making the Recommendation isto draw
attention to the specification and to promote its widespread deployment. This enhances the functionality and
interoperability of the Web.

A list of current W3C Recommendations and other technical documents can be found at http://www.w3.org/
pub/WWWI/TRY/.

The Consortium staff have encouraged the development of PNG, as have Compuserve, Inc. Most of thework
has been done by the PNG Development Group, png- gr oup@\3. or g. The Consortium does not currently
have plans to work on any future versions of PNG, though were the necessity to arise, and were an activity in
that area to receive the support of Members, the Consortium could in principle support some future activity.

Abstract

This document describes PNG (Portable Network Graphics), an extensible file format for the lossless,
portable, well-compressed storage of raster images. PNG provides a patent-free replacement for GIF and
can aso replace many common uses of TIFF. Indexed-color, grayscale, and truecolor images are supported,
plus an optiona apha channel. Sample depths range from 1 to 16 bits.

PNG is designed to work well in online viewing applications, such as the World Wide Web, so it is fully
streamable with a progressive display option. PNG isrobust, providing both full file integrity checking and
simple detection of common transmission errors. Also, PNG can store gamma and chromaticity data for
improved color matching on heterogeneous platforms.

This specification defines a proposed Internet Media Typei nmage/ png.

Contents

1 Introduction

PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

2 Data Representation

Integersand byteorder
Color vaues
Image layout

21
22
2.3
24
25
2.6
2.7
2.8

Alpha channel

Filtering . .
Interlaced dataorder e
Gammacorrection e e e e e e
Text strings .

3 FileStructure
PNGfilesignature e e

31
3.2
3.3
34

Chunk layout

Chunk naming conventions e
CRCagorithm e

4 Chunk Specifications
CriticA chunks e e

4.1

4.2

4.3
4.4

411

| HDR

Imageheader

412 PLTE Paette

4.1.3
4.1.4

| DAT
| END

Imagedata
Imagetrailer

Ancillary chunks e e e

421
422
4.2.3
4.2.4
4.25
4.2.6
4.2.7
4.2.8
429
4.2.10

bKGD
CcHRM
gANVA
hl ST
pHYs
sBIT
t EXt

t1MVE
t RNS
ZTXt

Background color
Primary chromaticities and whitepoint
Imagegamma e
Imagehistogram
Physical pixel dimensions
Significantbits
Textual data
Image last-modificationtime oL
TransparenCy o e e e e e e e e
Compressedtextua data

Summary of standardchunks
Additional chunk types

5 Deflate/Inflate Compression

10
10
11
11
13

14
14
14
15
16
17
17
17
18
18
19
19
20
20
22
22
23
24
25

25

PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

10

6 Filter Algorithms
6.1 Filtertypes e e
6.2 FiltertypeO: NOne.
6.3 Filtertypel: Sub e e
6.4 Filtertype2: Up
6.5 Filtertype3: Average e e e
6.6 Filtertyped: Pagth
Chunk Ordering Rules
7.1 Behaviorof PNGeditors e
7.2 Orderingof ancillary chunks e
7.3 Orderingof critical chunks
Miscellaneous Topics
8.1 Filenameextension
8.2 Internet mediatype
8.3 Macintoshfilelayout e
84 Multiplesimage extension
85 Security considerations e e e
Recommendations for Encoders
9.1 Sampledepthscaling e
9.2 Encoder gammahandling
9.3 Encodercolorhandling
9.4 Alphachannel creation
9.5 Suggested palettes e e e
9.6 Filtersalection
9.7 Textchunk processing o o i e e e e e e
9.8 Useofprivatechunks
9.9 Privatetypeandmethodcodes e
Recommendations for Decoders
10.1 Errorchecking e e
10.2 Pixedimensions.
10.3 Truecolorimagehandling
104 Sampledepthrescaling
10.5 Decoder gammahandling e
10.6 Decoder colorhandling
10.7 Background color e e e e
10.8 Alphachanng processing
10.9 Progressivedisplay e e
10.10 Suggested-palette and histogramusage e

1011 Textchunk processing o o v e e e e

26
26
27
27
28
29
29

30
31
31
32

32
32
32
32
33
33

PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

11 Glossary

12 Appendix: Rationale

121
122
12.3
124
125
12.6
127
12.8
12.9
12.10
1211
12.12
12.13
12.14

Why anew fileformat?
Why thesefeatures?
Why not thesefeatures?
Why not useformat X?
Byteorder e
Interlacing e e e
Why gamma?
Non-premultiplied alpha.
Filtering
TeXtSINNGS o o e e e e e
PNGfilesignature
Chunk layout e e e e
Chunk naming conventions e
Palettehistograms e e e

13 Appendix: Gamma Tutorial

14 Appendix: Color Tutorial

15 Appendix: Sample CRC Code

16 Appendix: Online Resources

17 Appendix: Revision History

18 References

19 Credits

52

56
56
56
57
58
58
59
59
60
60
61
61
62
62

70

74

76

76

7

79

1. INTRODUCTION 5

1

I ntroduction

The PNG format provides a portable, legally unencumbered, well-compressed, well-specified standard for
lossless bitmapped image files.

Although theinitial motivation for developing PNG wasto replace GIF, the design provides some useful new
features not available in GIF, with minimal cost to developers.

GIF features retained in PNG include:

Indexed-color images of up to 256 colors.

Streamability: files can be read and written serialy, thus alowing the file format to be used as a com-
munications protocol for on-the-fly generation and display of images.

Progressive display: asuitably prepared image file can be displayed asit is received over acommuni-
cationslink, yielding alow-resolution image very quickly followed by gradual improvement of detail.

Transparency: portions of the image can be marked as transparent, creating the effect of a non-
rectangular image.

Ancillary information: textual comments and other data can be stored within the image file.
Complete hardware and platform independence.

Effective, 100% lossless compression.

Important new features of PNG, not available in GIF, include:

Truecolor images of up to 48 bits per pixel.
Grayscale images of up to 16 bits per pixel.
Full alpha channdl (genera transparency masks).

Image gamma information, which supports automatic display of images with correct brightness/
contrast regardless of the machines used to originate and display the image.

Reliable, straightforward detection of file corruption.

Faster initial presentation in progressive display mode.

PNG is designed to be:

Simple and portable: developers should be able to implement PNG easily.

Legally unencumbered: to the best knowledge of the PNG authors, no algorithms under legal challenge
are used. (Some considerable effort has been spent to verify this.)

Well compressed: both indexed-color and truecolor images are compressed as effectively as in any
other widely used lossless format, and in most cases more effectively.

Interchangeable: any standard-conforming PNG decoder must read al conforming PNG files.

6 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

e Flexible: the format allows for future extensions and private add-ons, without compromising inter-
changeability of basic PNG.

e Robust: the design supports full file integrity checking as well as ssimple, quick detection of common
transmission errors.

The main part of this specification gives the definition of the file format and recommendations for encoder
and decoder behavior. An appendix gives the rationale for many design decisions. Although the rationaleis
not part of theformal specification, reading it can help implementors understand the design. Cross-references
in the main text point to relevant parts of the rationale. Additional appendixes, aso not part of the formal
specification, provide tutorials on gamma and color theory as well as other supporting material.

In this specification, the word “must” indicates a mandatory requirement, while “should” indicates recom-
mended behavior.

See Rationale: Why a new file format? (Section 12.1), Why these features? (Section 12.2), Why not these
features? (Section 12.3), Why not use format X? (Section 12.4).

Pronunciation

PNG is pronounced “ping”.

2 Data Representation

This chapter discusses basic data representations used in PNG files, as well as the expected representation of
the image data.

2.1 Integersand byte order

All integers that require more than one byte must be in network byte order: the most significant byte comes
first, then the less significant bytes in descending order of significance (MSB L SB for two-byte integers, B3
B2 B1 BO for four-byte integers). The highest bit (value 128) of a byte is numbered bit 7; the lowest bit
(value 1) is numbered bit 0. Values are unsigned unless otherwise noted. Values explicitly noted as signed
are represented in two’s complement notation.

See Rationale: Byte order (Section 12.5).
2.2 Color values
Colors can be represented by either grayscale or RGB (red, green, blue) sasmple data. Grayscale data repre-

sents luminance; RGB data represents calibrated color information (if the c HRMchunk is present) or uncali-
brated device-dependent color (if cHRMis absent). All color vaues range from zero (representing black) to

2. DATA REPRESENTATION 7

most intense at the maximum value for the sample depth. Note that the maximum value at a given sample
depth is (2"sampledepth)-1, not 2" sampledepth.

Sample values are not necessarily linear; the gAMA chunk specifies the gamma characteristic of the source
device, and viewers are strongly encouraged to compensate properly. See Gamma correction (Section 2.7).

Source data with a precision not directly supported in PNG (for example, 5 bit/sample truecolor) must be
scaled up to the next higher supported bit depth. Thisscaling isreversible with no loss of data, and it reduces
the number of cases that decoders have to cope with. See Recommendations for Encoders. Sample depth
scaling (Section 9.1) and Recommendations for Decoders. Sample depth rescaling (Section 10.4).

2.3 Image layout

Conceptually, aPNG imageis arectangular pixel array, with pixels appearing |eft-to-right within each scan-
line, and scanlines appearing top-to-bottom. (For progressive display purposes, the data may actualy be
transmitted in adifferent order; see Interlaced data order, Section 2.6.) The size of each pixel is determined
by the bit depth, which is the number of bits per sample in the image data.

Three types of pixel are supported:

e Anindexed-color pixel isrepresented by a single sample that is an index into a supplied palette. The
image bit depth determines the maximum number of palette entries, but not the color precision within
the palette.

e A grayscale pixel isrepresented by a single sample that is a grayscale level, where zero is black and
the largest value for the bit depth is white.

e A truecolor pixel is represented by three samples: red (zero = black, max = red) appears first, then
green (zero = black, max = green), then blue (zero = black, max = blue). The bit depth specifies the
size of each sample, not the total pixel size.

Optionally, grayscale and truecolor pixels can also include an apha sample, as described in the next section.

Pixels are always packed into scanlines with no wasted bits between pixels. Pixels smaller than abyte never
cross byte boundaries; they are packed into bytes with the leftmost pixel in the high-order bits of a byte, the
rightmost in the low-order bits. Permitted bit depths and pixel types are restricted so that in al cases the
packing is simple and efficient.

PNG permits multi-sample pixels only with 8- and 16-bit samples, so multiple samples of asingle pixel are
never packed into one byte. 16-bit samples are stored in network byte order (MSB first).

Scanlines always begin on byte boundaries. When pixels have fewer than 8 bits and the scanline width is
not evenly divisible by the number of pixels per byte, the low-order bits in the last byte of each scanline are
wasted. The contents of these wasted bits are unspecified.

An additional “filter type” byte is added to the beginning of every scanline (see Filtering, Section 2.5). The
filter type byte is not considered part of the image data, but it isincluded in the datastream sent to the com-
pression step.

8 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

2.4 Alphachanné

An apha channel, representing transparency information on a per-pixel basis, can be included in grayscale
and truecolor PNG images.

An aphavalue of zero represents full transparency, and avalue of (2 bitdepth)-1 represents afully opaque
pixel. Intermediate valuesindicate partially transparent pixelsthat can be combined with abackground image
to yield a composite image. (Thus, aphaisrealy the degree of opacity of the pixel. But most people refer
to alpha as providing transparency information, not opacity information, and we continue that custom here.)

Alphachannels can be included with images that have either 8 or 16 bits per sample, but not with images that
have fewer than 8 hits per sample. Alphasamples are represented with the same bit depth used for the image
samples. The aphasample for each pixel is stored immediately following the grayscale or RGB samples of
the pixel.

Thecolor values stored for apixel are not affected by the alphava ue assigned to the pixel. Thisruleis some-
times called “unassociated” or “non-premultiplied” apha. (Another common technique is to store sample
values premultiplied by the alpha fraction; in effect, such an image is already composited against a black
background. PNG does not use premultiplied apha.)

Transparency control is also possible without the storage cost of a full alpha channel. In an indexed-color
image, an apha vaue can be defined for each palette entry. In grayscale and truecolor images, asingle pixel
value can beidentified as being “transparent”. These techniques are controlled by thet RNS ancillary chunk

type.
If no apha channel nor t RNS chunk is present, al pixelsin the image are to be treated as fully opague.
Viewers can support transparency control partially, or not at al.

SeeRationale: Non-premultiplied alpha (Section 12.8), Recommendations for Encoders: Alphachannel cre-
ation (Section 9.4), and Recommendations for Decoders. Alpha channel processing (Section 10.8).

25 Filtering

PNG alows the image data to be filtered before it is compressed. Filtering can improve the compressibility
of the data. Thefilter step itself does not reduce the size of the data. All PNG filters are strictly lossless.

PNG defines severa different filter algorithms, including “None” which indicates no filtering. Thefilter al-
gorithm is specified for each scanline by afilter type byte that precedes the filtered scanline in the precom-
pression datastream. An intelligent encoder can switch filters from one scanline to the next. The method for
choosing which filter to employ is up to the encoder.

See Filter Algorithms (Chapter 6) and Rationale: Filtering (Section 12.9).

2. DATA REPRESENTATION 9

2.6 Interlaced data order

A PNG image can be stored in interlaced order to allow progressive display. The purpose of thisfeatureisto
allow imagesto “fade in” when they are being displayed on-the-fly. Interlacing dightly expands thefile size
on average, but it gives the user ameaningful display much more rapidly. Note that decoders are required to
be able to read interlaced images, whether or not they actually perform progressive display.

With interlace method O, pixels are stored sequentially from left to right, and scanlines sequentially from top
to bottom (no interlacing).

Interlace method 1, known as Adam7 after its author, Adam M. Costello, consists of seven distinct passes
over the image. Each pass transmits a subset of the pixels in the image. The pass in which each pixel is
transmitted is defined by replicating the following 8-by-8 pattern over the entire image, starting at the upper
left corner:

16462646
TT T T T 777
56565656
1T T 77777
36463646
TT T 77777
56565656
T7T T 7T 777

Within each pass, the selected pixels are transmitted left to right within a scanline, and selected scanlines
sequentially from top to bottom. For example, pass 2 contains pixels 4, 12, 20, etc. of scanlines 0, 8, 16, €tc.
(numbering from 0,0 at the upper left corner). The last pass contains the entirety of scanlines 1, 3, 5, etc.

Thedatawithin each passislaid out asthough it wereacompleteimage of theappropriate dimensions.
For example, if the complete imageis 16 by 16 pixels, then pass 3 will contain two scanlines, each containing
four pixels. When pixels have fewer than 8 bits, each such scanline is padded as needed to fill an integra
number of bytes (see Image layout, Section 2.3). Filtering is done on this reduced image in the usual way,
and afilter type byteistransmitted before each of its scanlines (see Filter Algorithms, Chapter 6). Notice that
the transmission order is defined so that al the scanlines transmitted in a pass will have the same number of
pixels; thisis necessary for proper application of some of the filters.

Caution: If the image contains fewer than five columns or fewer than five rows, some passes will be en-
tirely empty. Encoders and decoders must handle this case correctly. In particular, filter type bytes are only
associated with nonempty scanlines; no filter type bytes are present in an empty pass.

See Rationale: Interlacing (Section 12.6) and Recommendations for Decoders: Progressive display (Section
10.9).

10 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

2.7 Gamma correction

PNG images can specify, via the gAMA chunk, the gamma characteristic of the image with respect to the
origina scene. Display programs are strongly encouraged to use thisinformation, plusinformation about the
display device they are using and room lighting, to present the image to the viewer in away that reproduces
what the image’s origina author saw as closely as possible. See Gamma Tutorial (Chapter 13) if you aren't
aready familiar with gamma issues.

Gammacorrection isnot applied to the a phachannel, if any. Alphasamplesawaysrepresent alinear fraction
of full opacity.

For high-precision applications, the exact chromaticity of the RGB data in a PNG image can be specified
viathe c HRMchunk, allowing more accurate color matching than gamma correction alone will provide. See
Color Tutoria (Chapter 14) if you aren’t already familiar with color representation issues.

See Rationale: Why gamma? (Section 12.7), Recommendations for Encoders: Encoder gamma handling
(Section 9.2), and Recommendations for Decoders. Decoder gamma handling (Section 10.5).

2.8 Text strings
A PNG file can store text associated with the image, such as an image description or copyright notice. Key-
words are used to indicate what each text string represents.

SO 8859-1 (Latin-1) isthe character set recommended for usein text strings [SO-8859]. This character set
isasuperset of 7-bit ASCII.

Character codes not defined in Latin-1 should not be used, because they have no platform-independent mean-
ing. If anon-Latin-1 code does appear in a PNG text string, itsinterpretation will vary across platforms and
decoders. Some systems might not even be able to display al the characters in Latin-1, but most modern
systems can.

Provision is also made for the storage of compressed text.

See Rationale: Text strings (Section 12.10).

3 FileStructure

A PNG file consists of a PNG signature followed by a series of chunks. This chapter defines the signature
and the basic properties of chunks. Individua chunk types are discussed in the next chapter.

3.1 PNG filesignature

Thefirst eight bytes of a PNG file aways contain the following (decimal) values:

3. FILE STRUCTURE 11

137 80 78 71 13 10 26 10

This signature indicates that the remainder of the file contains a single PNG image, consisting of a series of
chunks beginning with an | HDR chunk and ending with an | END chunk.

See Rationale: PNG file signature (Section 12.11).

3.2 Chunk layout

Each chunk consists of four parts:
Length

A 4-byte unsigned integer giving the number of bytesin the chunk’s datafield. Thelength counts only
the data field, not itself, the chunk type code, or the CRC. Zero isavalid length. Although encoders
and decoders should treat the length as unsigned, its value must not exceed (2°31)-1 bytes.

Chunk Type

A 4-byte chunk type code. For convenience in description and in examining PNG files, type codes
arerestricted to consist of uppercase and lowercase ASCII letters (A-Z and a-z, or 65-90 and 97-122
decimal). However, encoders and decoders must treat the codes as fixed binary values, not character
strings. For example, it would not be correct to represent the type code | DAT by the EBCDIC equiva
lents of those letters. Additional naming conventions for chunk types are discussed in the next section.

Chunk Data
The data bytes appropriate to the chunk type, if any. Thisfield can be of zero length.
CRC

A 4-byte CRC (Cyclic Redundancy Check) calculated on the preceding bytes in the chunk, includ-
ing the chunk type code and chunk data fields, but not including the length field. The CRC is aways
present, even for chunks containing no data. See CRC agorithm (Section 3.4).

The chunk data length can be any number of bytes up to the maximum,; therefore, implementors cannot as-
sume that chunks are aligned on any boundaries larger than bytes.

Chunks can appear inany order, subject to the restrictions placed on each chunk type. (One notablerestriction
isthat | HDR must appear first and | END must appear last; thus the | END chunk serves as an end-of-file
marker.) Multiple chunks of the same type can appear, but only if specifically permitted for that type.

See Rationale: Chunk layout (Section 12.12).
3.3 Chunk naming conventions

Chunk type codes are assigned so that adecoder can determine some properties of achunk even when it does
not recognize the type code. These rules are intended to allow safe, flexible extension of the PNG format,

12 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

by allowing adecoder to decide what to do when it encounters an unknown chunk. The naming rules are not
normally of interest when the decoder does recognize the chunk’s type.

Four bits of the type code, namely bit 5 (value 32) of each byte, are used to convey chunk properties. This
choice means that a human can read off the assigned properties according to whether each letter of the type
code is uppercase (bit 5is0) or lowercase (bit 5is1). However, decoders should test the properties of an un-
known chunk by numerically testing the specified bits; testing whether a character is uppercase or lowercase
isinefficient, and even incorrect if alocale-specific case definition is used.

It isworth noting that the property bits are an inherent part of the chunk name, and hence are fixed for any
chunk type. Thus, TEXT and Text would be unrelated chunk type codes, not the same chunk with different
properties. Decoders must recognize type codes by a simple four-byte literal comparison; it is incorrect to
perform case conversion on type codes.

The semantics of the property bits are:

Ancillary bit: bit 5 of first byte
0 (uppercase) = critical, 1 (lowercase) = ancillary.

Chunksthat are not strictly necessary in order to meaningfully display the contents of thefileare known
as “ancillary” chunks. A decoder encountering an unknown chunk in which the ancillary bit is 1 can
safely ignore the chunk and proceed to display the image. The time chunk (t | ME) is an example of
an ancillary chunk.

Chunks that are necessary for successful display of the file's contents are called “critical” chunks. A
decoder encountering an unknown chunk inwhich theancillary bit isO must indicate to the user that the
image contains information it cannot safely interpret. The image header chunk (I HDR) is an example
of acritical chunk.

Private bit: bit 5 of second byte
0 (uppercase) = public, 1 (lowercase) = private.

A public chunk isone that is part of the PNG specification or is registered in the list of PNG special-
purpose public chunk types. Applications can also define private (unregistered) chunks for their own
purposes. The names of private chunks must have alowercase second letter, while public chunks will
aways be assigned names with uppercase second letters. Note that decoders do not need to test the
private-chunk property hit, since it has no functiona significance; it is simply an administrative con-
venience to ensure that public and private chunk names will not conflict. See Additional chunk types
(Section 4.4) and Recommendations for Encoders. Use of private chunks (Section 9.8).

Reserved bit: bit 5 of third byte
Must be O (uppercase) in files conforming to this version of PNG.

The significance of the case of the third letter of the chunk name is reserved for possible future ex-
pansion. At the present time all chunk names must have uppercase third letters. (Decoders should
not complain about alowercase third letter, however, as some future version of the PNG specification
could define a meaning for this bit. It is sufficient to treat a chunk with alowercase third letter in the
same way as any other unknown chunk type.)

3. FILE STRUCTURE 13

Safe-to-copy bit: bit 5 of fourth byte
0 (uppercase) = unsafe to copy, 1 (lowercase) = safe to copy.

This property bit is not of interest to pure decoders, but it is heeded by PNG editors (programs that
modify PNG files). This bit defines the proper handling of unrecognized chunksin afile that is being
modified.

If achunk’s safe-to-copy bit is 1, the chunk may be copied to a modified PNG file whether or not the
software recognizes the chunk type, and regardless of the extent of the file modifications.

If a chunk’s safe-to-copy bit is O, it indicates that the chunk depends on the image data. If the pro-
gram has made any changes to critical chunks, including addition, modification, deletion, or reorder-
ing of critical chunks, then unrecognized unsafe chunks must not be copied to the output PNG file.
(Of course, if the program does recogni ze the chunk, it can choose to output an appropriately modified
version.)

A PNG editor isalwaysallowed to copy al unrecognized chunksif it has only added, deleted, modified,
or reordered ancillary chunks. Thisimpliesthat itis not permissible for ancillary chunks to depend on
other ancillary chunks.

PNG editors that do not recognize acritical chunk must report an error and refuse to process that PNG
fileat al. The safe/lunsafe mechanism isintended for use with ancillary chunks. The safe-to-copy bit
will aways be O for critical chunks.

Rules for PNG editors are discussed further in Chunk Ordering Rules (Chapter 7).

For example, the hypothetical chunk type name“bLOb” has the property bits:

bLOb <- 32 bit chunk type code represented in text form
111

||| +- Safe-to-copy bit is 1 (lower case letter; bit 5is 1)

| | +- Reserved bit is O (upper case letter; bit 5 is 0)
| +-- Private bit is O (upper case letter; bit 5is 0)
+--- Ancillary bit is 1 (lower case letter; bit 5is 1)

Therefore, this name represents an ancillary, public, safe-to-copy chunk.

See Rationale: Chunk naming conventions (Section 12.13).

3.4 CRC algorithm

Chunk CRCsare calculated using standard CRC methods with pre and post conditioning, as defined by 1SO
3309 [1SO-3309] or ITU-T V.42 [ITU-V42]. The CRC polynomia employed is

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

The 32-bit CRC register isinitialized to al 1's, and then the data from each byte is processed from the least
significant bit (1) to the most significant bit (128). After all the data bytes are processed, the CRC register

14 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

isinverted (its ones complement is taken). This value is transmitted (stored in the file) MSB first. For the
purpose of separating into bytes and ordering, the least significant bit of the 32-bit CRC is defined to be the
coefficient of the 23! term.

Practical calculation of the CRC aways employs a precal culated table to greatly accelerate the computation.
See Sample CRC Code (Chapter 15).

4 Chunk Specifications

This chapter defines the standard types of PNG chunks.

4.1 Critical chunks

All implementations must understand and successfully render the standard critical chunks. A valid PNG
image must contain an | HDR chunk, one or more | DAT chunks, and an | END chunk.

411 | HDR Image header

The | HDR chunk must appear FIRST. It contains:

W dt h: 4 bytes
Hei ght : 4 bytes
Bit depth: 1 byte
Col or type: 1 byte
Conpressi on nethod: 1 byte
Filter nethod: 1 byte
Interlace met hod: 1 byte

Width and height give the image dimensions in pixels. They are 4-byte integers. Zero is an invalid vaue.
The maximum for each is (2°31)-1 in order to accommodate languages that have difficulty with unsigned
4-byte values.

Bit depth is a single-byte integer giving the number of bits per sample or per palette index (not per pixel).
Vaid values are 1, 2, 4, 8, and 16, athough not all values are allowed for al color types.

Color typeisasingle-byte integer that describes the interpretation of theimage data. Color type codes repre-
sent sums of the following values: 1 (palette used), 2 (color used), and 4 (alpha channel used). Valid values
areO, 2, 3, 4, and 6.

Bit depth restrictions for each color type are imposed to simplify implementations and to prohibit combina
tions that do not compress well. Decoders must support all legal combinations of bit depth and color type.
The alowed combinations are:

4. CHUNK SPECIFICATIONS 15

Col or Al | oned Interpretation
Type Bit Depths

0 1,2,4,8,16 Each pixel is a grayscal e sanple.
2 8,16 Each pixel is an R GB triple.
3 1,2,4,8 Each pi xel is a palette index;

a PLTE chunk nust appear.

4 8,16 Each pi xel is a grayscal e sanpl e,
foll owed by an al pha sanpl e.

6 8, 16 Each pixel is an RGB triple,
foll owed by an al pha sanpl e.

The sample depth is the same as the bit depth except in the case of color type 3, in which the sample depth
isaways 8 hits.

Compression method is a single-byte integer that indicates the method used to compress the image data. At
present, only compression method 0 (deflatefinflate compression with a32K diding window) is defined. All
standard PNG images must be compressed with this scheme. The compression method field is provided for
possible future expansion or proprietary variants. Decoders must check thisbyte and report an error if it holds
an unrecognized code. See Deflate/Inflate Compression (Chapter 5) for details.

Filter method is a single-byte integer that indicates the preprocessing method applied to the image data be-
fore compression. At present, only filter method O (adaptive filtering with five basic filter types) is defined.
Aswith the compression method field, decoders must check this byte and report an error if it holds an unrec-
ognized code. See Filter Algorithms (Chapter 6) for details.

Interlace method is a single-byte integer that indicates the transmission order of the image data. Two values
are currently defined: O (no interlace) or 1 (Adam?7 interlace). See Interlaced data order (Section 2.6) for
details.

412 PLTE Palette

The PLTE chunk contains from 1 to 256 pal ette entries, each athree-byte series of the form:

Red: 1 byte (0 = black, 255 = red)
Geen: 1 byte (0 = black, 255 = green)
Blue: 1 byte (0 = black, 255 = bl ue)

The number of entries is determined from the chunk length. A chunk length not divisible by 3 isan error.

This chunk must appear for color type 3, and can appear for color types 2 and 6; it must not appear for color
types 0 and 4. If this chunk does appear, it must precede thefirst | DAT chunk. There must not be more than
one PLTE chunk.

16 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

For color type 3 (indexed color), the PLTE chunk isrequired. Thefirst entry in PLTE isreferenced by pixel
value 0, the second by pixel value 1, etc. The number of palette entries must not exceed the range that can
be represented in the image bit depth (for example, 2°4 = 16 for a bit depth of 4). It is permissible to have
fewer entries than the bit depth would alow. In that case, any out-of-range pixel value found in the image
dataisan error.

For color types 2 and 6 (truecolor and truecolor with alpha), the PLTE chunk is optional. If present, it pro-
vides a suggested set of from 1 to 256 colors to which the truecolor image can be quantized if the viewer
cannot display truecolor directly. If PLTE isnot present, such aviewer will need to select colors on its own,
but it is often preferable for this to be done once by the encoder. (See Recommendations for Encoders. Sug-
gested palettes, Section 9.5.)

Note that the palette uses 8 bits (1 byte) per sample regardless of the image bit depth specification. In par-
ticular, the palette is 8 bits deep even when it is a suggested quantization of a 16-bit truecolor image.

Thereis no requirement that the palette entries all be used by the image, nor that they all be different.

4.1.3 | DAT Imagedata

The | DAT chunk contains the actual image data. To create this data:

1. Beginwithimage scanlines represented as described in Image layout (Section 2.3); the layout and total
size of this raw data are determined by the fields of | HDR.

2. Filter the image data according to the filtering method specified by the | HDR chunk. (Note that with
filter method O, the only one currently defined, this implies prepending afilter type byte to each scan-
line))

3. Compress the filtered data using the compression method specified by the | HDR chunk.
The | DAT chunk contains the output datastream of the compression algorithm.
To read the image data, reverse this process.

There can be multiple I DAT chunks; if so, they must appear consecutively with no other intervening chunks.
The compressed datastream is then the concatenation of the contents of all the | DAT chunks. The encoder
can divide the compressed datastream into | DAT chunks however it wishes. (Multiple | DAT chunks are
allowed so that encoders can work in a fixed amount of memory; typically the chunk size will correspond
to the encoder’s buffer size)) It is important to emphasize that | DAT chunk boundaries have no semantic
significance and can occur at any point in the compressed datastream. A PNG filein which each | DAT chunk
contains only one data byteislega, though remarkably wasteful of space. (For that matter, zero-length | DAT
chunks are legal, though even more wasteful.)

See Filter Algorithms (Chapter 6) and Defl ate/I nflate Compression (Chapter 5) for details.

4. CHUNK SPECIFICATIONS 17

414 |1 END Imagetrailer

The | END chunk must appear LAST. It marks the end of the PNG datastream. The chunk’s data field is
empty.

4.2 Ancillary chunks

All ancillary chunks are optional, in the sense that encoders need not write them and decoders can ignore
them. However, encoders are encouraged to write the standard ancillary chunks when the information is
available, and decoders are encouraged to interpret these chunks when appropriate and feasible.

The standard ancillary chunks are listed in alphabetical order. Thisis not necessarily the order in which they
would appear in afile.

421 bKGD Background color
The bKGD chunk specifies a default background color to present the image against. Note that viewers are
not bound to honor this chunk; a viewer can choose to use a different background.
For color type 3 (indexed color), the bKGD chunk contains:
Palette index: 1 byte
The value is the palette index of the color to be used as background.
For color types 0 and 4 (grayscale, with or without apha), bKGD contains:
Gray: 2 bytes, range 0 .. (2 bitdepth)-1

(For consistency, 2 bytes are used regardless of the image bit depth.) The value is the gray level to be used
as background.

For color types 2 and 6 (truecolor, with or without alpha), bKGD contains:

Red: 2 bytes, range 0 .. (2 bitdepth)-1
G een: 2 bytes, range O .. (2 bitdepth)-1
Blue: 2 bytes, range 0 .. (2 bitdepth)-1

(For consistency, 2 bytes per sample are used regardless of the image bit depth.) Thisisthe RGB color to be
used as background.

When present, the bKGD chunk must precede thefirst | DAT chunk, and must follow the PLTE chunk, if any.

See Recommendations for Decoders. Background color (Section 10.7).

18 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

422 cHRM Primary chromaticities and white point

Applications that need device-independent specification of colors in a PNG file can use the ¢ HRM chunk
to specify the 1931 CIE x,y chromaticities of the red, green, and blue primaries used in the image, and the
referenced white point. See Color Tutorial (Chapter 14) for more information.

The c HRMchunk contains:

White Point Xx: 4 bytes
VWhite Point y: 4 bytes

Red x: 4 bytes
Red v: 4 bytes
Green Xx: 4 bytes
G een vy: 4 bytes
Bl ue x: 4 bytes
Bl ue y: 4 bytes

Each valueisencoded as a4-byte unsigned integer, representing the x or y value times 100000. For example,
avalue of 0.3127 would be stored as the integer 31270.

cHRMis alowed in all PNG files, athough it is of little value for grayscale images.

If the encoder does not know the chromaticity values, it should not write ac HRMchunk; the absence of a
¢ HRMchunk indicates that the image’s primary colors are device-dependent.

If the c HRMchunk appears, it must precede the first | DAT chunk, and it must aso precede the PLTE chunk
if present.

See Recommendations for Encoders. Encoder color handling (Section 9.3), and Recommendations for De-
coders: Decoder color handling (Section 10.6).

4.2.3 gAMA Image gamma

The gAMA chunk specifies the gamma of the camera (or simulated camera) that produced the image, and
thus the gamma of the image with respect to the original scene. More precisely, the g AMA chunk encodes the
file_gammavalue, as defined in Gamma Tutoria (Chapter 13).

The gAMA chunk contains:
| mmge gama: 4 bytes

Thevaueisencoded asa4-byte unsigned integer, representing gammatimes 100000. For example, agamma
of 0.45 would be stored as the integer 45000.

If the encoder does not know the image’'s gamma value, it should not write a g AMA chunk; the absence of a
gAMA chunk indicates that the gammais unknown.

If the gAMA chunk appears, it must precede the first I DAT chunk, and it must also precede the PLTE chunk
if present.

4. CHUNK SPECIFICATIONS 19

See Gamma correction (Section 2.7), Recommendations for Encoders: Encoder gamma handling (Section
9.2), and Recommendations for Decoders. Decoder gamma handling (Section 10.5).

424 hl ST Image histogram

The hl ST chunk gives the approximate usage frequency of each color in the color paette. A histogram
chunk can appear only when a palette chunk appears. If aviewer is unable to provide al the colors listed in
the palette, the histogram may help it decide how to choose a subset of the colors for display.

Thehl ST chunk contains a series of 2-byte (16 bit) unsigned integers. There must be exactly one entry for
each entry in the PLTE chunk. Each entry isproportiona to the fraction of pixels in the image that have that
palette index; the exact scale factor is chosen by the encoder.

Histogram entries are approximate, with the exception that a zero entry specifies that the corresponding
palette entry is not used at al in the image. It is required that a histogram entry be nonzero if there are any
pixels of that color.

When the palette is a suggested quantization of atruecolor image, the histogram is necessarily approximate,
since a decoder may map pixels to paette entries differently than the encoder did. In this situation, zero
entries should not appear.

Thehl ST chunk, if it appears, must follow the PLTE chunk, and must precede the first I DAT chunk.

See Rationale: Paette histograms (Section 12.14), and Recommendations for Decoders. Suggested-palette
and histogram usage (Section 10.10).

425 pHYs Physical pixel dimensions

The pHYs chunk specifies the intended pixel size or aspect ratio for display of the image. It contains:

Pi xel s per unit, X axis: 4 bytes (unsigned integer)
Pi xel s per unit, Y axis: 4 bytes (unsigned integer)
Unit specifier: 1 byte

The following values are legal for the unit specifier:

O: unit is unknown
1: unit is the neter

When the unit specifier is 0, the pHYs chunk defines pixel aspect ratio only; the actua size of the pixels
remains unspecified.

Conversion note: one inch is equal to exactly 0.0254 meters.

If this ancillary chunk is not present, pixels are assumed to be square, and the physical size of each pixel is
unknown.

If present, this chunk must precede the first | DAT chunk.

20 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

See Recommendations for Decoders: Pixel dimensions (Section 10.2).

426 sBI T Significant bits

To simplify decoders, PNG specifies that only certain sample depths can be used, and further specifies that
sample values should be scaled to the full range of possible values at the sample depth. However, thesBI T
chunk isprovided in order to store the original number of significant bits. Thisallows decodersto recover the
original datalosslessy even if the data had a sample depth not directly supported by PNG. We recommend
that an encoder emit an sBI T chunk if it has converted the data from alower sample depth.

For color type O (grayscale), the sBI T chunk contains a single byte, indicating the number of bits that were
significant in the source data.

For color type 2 (truecolor), the sBI T chunk contains three bytes, indicating the number of bits that were
significant in the source data for the red, green, and blue channels, respectively.

For color type 3 (indexed color), thesBI T chunk contains three bytes, indicating the number of bitsthat were
significant in the source data for the red, green, and blue components of the palette entries, respectively.

For color type 4 (grayscale with apha channel), the sBI T chunk contains two bytes, indicating the number
of bits that were significant in the source grayscale data and the source alpha data, respectively.

For color type 6 (truecolor with alpha channel), the sBI T chunk contains four bytes, indicating the number
of bits that were significant in the source data for the red, green, blue and apha channels, respectively.

Each depth specified in sBI T must be greater than zero and less than or equal to the sample depth (which is
8 for indexed-color images, and the bit depth given in | HDR for other color types).

A decoder need not pay attention to sBI T: the stored image isavalid PNG file of the sample depth indicated
by | HDR. However, if the decoder wishes to recover the original data at its original precision, this can be
done by right-shifting the stored samples (the stored pal ette entries, for an indexed-color image). Theencoder
must scale the data in such away that the high-order bits match the original data.

If the sBI T chunk appears, it must precede the first I DAT chunk, and it must also precede the PLTE chunk
if present.

See Recommendations for Encoders. Sample depth scaling (Section 9.1) and Recommendations for De-
coders: Sample depth rescaling (Section 10.4).

427 tEXt Textual data

Textual information that the encoder wishes to record with the image can be stored int EXt chunks. Each
t EXt chunk contains akeyword and atext string, in the format:

Keywor d: 1-79 bytes (character string)
Nul | separator: 1 byte
Text : n bytes (character string)

4. CHUNK SPECIFICATIONS 21

The keyword and text string are separated by a zero byte (null character). Neither the keyword nor the text
string can contain a null character. Note that the text string is not null-terminated (the length of the chunk
is sufficient information to locate the ending). The keyword must be at least one character and less than 80
characters long. The text string can be of any length from zero bytes up to the maximum permissible chunk
size less the length of the keyword and separator.

Any number of t EXt chunks can appear, and more than one with the same keyword is permissible.

The keyword indicates the type of information represented by the text string. The following keywords are
predefined and should be used where appropriate:

Title Short (one line) title or caption for imge
Aut hor Nane of inage’s creator

Descri ption Description of inage (possibly Iong)

Copyri ght Copyri ght notice

Creation Tinme Time of original imge creation

Sof t war e Software used to create the inmage

Di scl ai mer Legal di scl ai mer

War ni ng War ni ng of nature of content

Sour ce Devi ce used to create the inage

Conment M scel | aneous conmment; conversion from

G F comment

For the Creation Time keyword, the date format defined in section 5.2.14 of RFC 1123 is suggested, but not
required [RFC-1123]. Decoders should alow for free-format text associated with this or any other keyword.

Other keywords may be invented for other purposes. Keywords of general interest can be registered with the
maintainers of the PNG specification. However, it is aso permitted to use private unregistered keywords.
(Private keywords should be reasonably self-explanatory, in order to minimize the chance that the same key-
word will be used for incompatible purposes by different people.)

Both keyword and text are interpreted according to the ISO 8859-1 (Latin-1) character set [|SO-8859]. The
text string can contain any Latin-1 character. Newlines in the text string should be represented by a single
linefeed character (decimal 10); use of other control characters in the text is discouraged.

Keywords must contain only printable Latin-1 characters and spaces; that is, only character codes 32-126
and 161-255 decimal are allowed. To reduce the chances for human misreading of a keyword, leading and
trailing spaces are forbidden, as are consecutive spaces. Note also that the non-breaking space (code 160) is
not permitted in keywords, sinceit is visualy indistinguishable from an ordinary space.

Keywords must be spelled exactly as registered, so that decoders can use simple literal comparisons when
looking for particular keywords. In particular, keywords are considered case-sensitive.

See Recommendations for Encoders. Text chunk processing (Section 9.7) and Recommendations for De-
coders: Text chunk processing (Section 10.11).

22 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

428 t1ME Imagelast-modification time

Thet | ME chunk gives the time of the last image modification (not the time of initial image creation). It
contains:

Year : 2 bytes (conplete; for exanple, 1995, not 95)

Month: 1 byte (1-12)

Day: 1 byte (1-31)

Hour : 1 byte (0-23)

Mnute: 1 byte (0-59)

Second: 1 byte (0-60) (yes, 60, for |eap seconds; not 61,

a conmmon error)
Universal Time (UTC, aso caled GMT) should be specified rather than local time.

Thet | ME chunk isintended for use as an automatically-applied time stamp that is updated whenever the
image datais changed. It isrecommended that t | ME not be changed by PNG editors that do not change the
image data. See also the Creation Timet EXt keyword, which can be used for a user-supplied time.

429 tRNS Transparency

The t RNS chunk specifies that the image uses simple transparency: either apha values associated with
palette entries (for indexed-color images) or a single transparent color (for grayscale and truecolor images).
Although simple trangparency is not as elegant as the full alpha channel, it requires less storage space and is
sufficient for many common cases.

For color type 3 (indexed color), thet RNS chunk contains a series of one-byte apha values, corresponding
to entries in the PLTE chunk:

Al pha for palette index 0: 1 byte
Al pha for palette index 1: 1 byte
etc ...

Each entry indicates that pixels of the corresponding palette index must be treated as having the specified
alphavalue. Alphavaues havethe sameinterpretation asinan 8-bit full alphachannel: 0isfully transparent,
255 isfully opaque, regardless of image bit depth. Thet RNS chunk must not contain more alpha values than
there are palette entries, but t RNS can contain fewer values than there are palette entries. In this case, the
aphavauefor al remaining palette entries is assumed to be 255. 1n the common case in which only palette
index 0 need be made transparent, only aone-byte t RNS chunk is needed.

For color type O (grayscale), thet RNS chunk contains asingle gray level value, stored in the format:
Gray: 2 bytes, range 0 .. (2 bitdepth)-1

(For consistency, 2 bytes are used regardless of the image bit depth.) Pixels of the specified gray leve areto
betreated astransparent (equivaent to aphavalue 0); all other pixels areto be treated asfully opague (alpha
value (2 bitdepth)-1).

4. CHUNK SPECIFICATIONS 23

For color type 2 (truecolor), thet RNS chunk contains a single RGB color value, stored in the format:

Red: 2 bytes, range 0 .. (2 bitdepth)-1
Green: 2 bytes, range 0 .. (2 bitdepth)-1
Blue: 2 bytes, range 0 .. (2 bitdepth)-1

(For consistency, 2 bytes per sample are used regardless of the image bit depth.) Pixels of the specified color
value are to be treated as transparent (equivalent to alpha value 0); all other pixels areto be treated as fully
opague (alpha vaue (2 bitdepth)-1).

t RNS is prohibited for color types 4 and 6, since afull alpha channel is aready present in those cases.

Note: when dealing with 16-bit grayscale or truecolor data, it isimportant to compare both bytes of the sample
values to determine whether a pixel is transparent. Although decoders may drop the low-order byte of the
samples for display, this must not occur until after the data has been tested for transparency. For example, if
the grayscale level 0x0001 is specified to be transparent, it would be incorrect to compare only the high-order
byte and decide that 0x0002 is also transparent.

When present, thet RNS chunk must precede the first | DAT chunk, and must follow the PLTE chunk, if any.

4210 zTXt Compressed textual data

ThezTXt chunk contains textual data, just ast EXt does; however, zTXt takes advantage of compression.
ZTXt andt EXt chunks are semantically equivalent, but zTXt isrecommended for storing large blocks of
text.

A zTXt chunk contains:

Keywor d: 1-79 bytes (character string)
Nul | separator: 1 byte
Conpressi on nethod: 1 byte
Conpr essed text: n bytes

The keyword and null separator are exactly the same asin the t EXt chunk. Note that the keyword is not
compressed. The compression method byte identifies the compression method used in this zTXt chunk.
The only value presently defined for it is O (deflate/inflate compression). The compression method byte is
followed by acompressed datastream that makes up the remainder of the chunk. For compression method O,
this datastream adheres to the zlib datastream format (see Deflate/Inflate Compression, Chapter 5). Decom-
pression of this datastream yields Latin-1 text that isidentical to the text that would be stored in an equivalent
t EXt chunk.

Any number of zTXt andt EXt chunks can appear inthe samefile. Seethe preceding definition of thet EXt
chunk for the predefined keywords and the recommended format of the text.

See Recommendations for Encoders. Text chunk processing (Section 9.7), and Recommendations for De-
coders: Text chunk processing (Section 10.11).

24 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

4.3 Summary of standard chunks

This table summarizes some properties of the standard chunk types.

Critical chunks (nust appear in this order, except PLTE
is optional):

Name Miltiple Ordering constraints

xX?
| HDR No Must be first
PLTE No Bef ore | DAT
| DAT Yes Mul tiple | DATs nust be consecutive
| END No Must be | ast

Ancillary chunks (need not appear in this order):

Name Multiple Ordering constraints

x?
cHRM No Before PLTE and | DAT
gANA No Bef ore PLTE and | DAT
sBIT No Before PLTE and | DAT
bKGD No After PLTE;, before |DAT
hl ST No After PLTE;, before |DAT
t RNS No After PLTE, before |DAT
pHYs No Bef ore | DAT
t1 ME No None
t EXt Yes None
ZTXt Yes None

Standard keywords for t EXt and zTXt chunks:

Title Short (one line) title or caption for inage
Aut hor Nane of inage’s creator

Descri ption Description of inage (possibly |Iong)

Copyri ght Copyright notice

Creation Tinme Time of original imge creation

Sof t war e Software used to create the inmage

Di scl ai mer Legal di scl ai mer

V\ar ni ng War ni ng of nature of content

Sour ce Device used to create the image

Conmment M scel | aneous conment; conversion from

G F comrent

5. DEFLATE/INFLATE COMPRESSION 25

4.4 Additional chunk types

Additiona public PNG chunk types are defined in the document “PNG Special-Purpose Public Chunks’
[PNG-EXTENSIONS]. Chunks described there are expected to be less widely supported than those defined
in this specification. However, application authors are encouraged to use those chunk types whenever appro-
priate for their applications. Additional chunk types can be proposed for inclusion in that list by contacting
the PNG specification maintainers at png- i nf o@unet . uu. net or a png- gr oup@.a3. or g.

New public chunkswill only beregistered if they are of use to others and do not violate the design philosophy
of PNG. Chunk registration is not automatic, although it istheintent of the authors that it be straightforward
when a new chunk of potentially wide application is needed. Note that the creation of new critical chunk
types is discouraged unless absolutely necessary.

Applications can also use private chunk types to carry data that is not of interest to other applications. See
Recommendations for Encoders. Use of private chunks (Section 9.8).

Decoders must be prepared to encounter unrecognized public or private chunk type codes. Unrecognized
chunk types must be handled as described in Chunk naming conventions (Section 3.3).

5 Deflate/Inflate Compression

PNG compression method O (the only compression method presently defined for PNG) specifies deflate/
inflate compression with a32K dliding window. Deflate compression isan LZ77 derivative used in zip, gzip,
pkzip and related programs. Extensive research has been done supporting its patent-free status. Portable C
implementations are freely available.

Deflate-compressed datastreams within PNG are stored in the “zlib” format, which has the structure:

Conmpr essi on nmet hod/ fl ags code: 1 byte
Addi tional flags/check bits: 1 byte
Conpr essed data bl ocks: n bytes
Check val ue: 4 bytes

Further details on this format are given in the zlib specification [RFC-1950].

For PNG compression method 0, the zlib compression method/flags code must specify method code 8 (“ de-
flate” compression) and an LZ77 window size of not more than 32K. Note that the zlib compression method
number is not the same as the PNG compression method number. The additional flags must not specify a
preset dictionary.

The compressed datawithin the zlib datastream is stored as aseries of blocks, each of which can represent raw
(uncompressed) data, LZ77-compressed data encoded with fixed Huffman codes, or LZ77-compressed data
encoded with custom Huffman codes. A marker bit in the final block identifiesit as the last block, allowing
the decoder to recognize the end of the compressed datastream. Further details on the compression algorithm
and the encoding are given in the defl ate specification [RFC-1951].

26 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

The check value stored at the end of the zlib datastream is calculated on the uncompressed data represented
by the datastream. Note that the algorithm used is not the same as the CRC calculation used for PNG chunk
check values. The zlib check value is useful mainly as a cross-check that the deflate and inflate algorithms
are implemented correctly. Verifying the chunk CRCs provides adegquate confidence that the PNG file has
been transmitted undamaged.

InaPNGfile, the concatenation of the contents of all thel DAT chunks makesup azlib datastream as specified
above. This datastream decompresses to filtered image data as described elsewhere in this document.

It isimportant to emphasize that the boundaries between | DAT chunks are arbitrary and can fall anywhere
in the zlib datastream. There is not necessarily any correlation between | DAT chunk boundaries and deflate
block boundaries or any other feature of the zlib data. For example, it isentirely possible for the terminating
Zlib check value to be split across | DAT chunks.

Inthesamevein, thereisno required correl ation between the structure of theimage data (i.e., scanline bound-
aries) and deflate block boundaries or I DAT chunk boundaries. The complete image dataiis represented by a
single zlib datastream that is stored in some number of | DAT chunks; a decoder that assumes any more than
thisisincorrect. (Of course, some encoder implementations may emit filesin which some of these structures
are indeed related. But decoders cannot rely on this.)

PNG also uses zlib datastreams in zTXt chunks. InazTXt chunk, the remainder of the chunk following
the compression method byte is a zlib datastream as specified above. This datastream decompresses to the
user-readable text described by the chunk’s keyword. Unlike the image data, such datastreams are not split
across chunks; each zTXt chunk contains an independent zlib datastream.

Additional documentation and portable C codefor deflate and inflate are available from the Info-ZI P archives
a <URL: ftp://ftp.uu. net/pub/archiving/zip/>.

6 Filter Algorithms

This chapter describes the filter algorithms that can be applied before compression. The purpose of these
filtersisto prepare the image data for optimum compression.

6.1 Filter types

PNG filter method O defines five basic filter types:
Type Nanme

0 None

1 Sub

2 Up

3 Aver age
4 Paet h

6. FILTERALGORITHMS 27

(Note that filter method O in | HDR specifies exactly this set of five filter types. If the set of filter typesis
ever extended, a different filter method number will be assigned to the extended set, so that decoders need
not decompress the data to discover that it contains unsupported filter types.)

The encoder can choose which of these filter agorithms to apply on a scanline-by-scanline basis. In the
image data sent to the compression step, each scanline is preceded by afilter type byte that specifies the filter
algorithm used for that scanline.

Filtering agorithms are applied to bytes, not to pixels, regardless of the bit depth or color type of the im-
age. The filtering agorithms work on the byte sequence formed by a scanline that has been represented as
described in Image layout (Section 2.3). If the image includes an apha channel, the alpha data is filtered in
the same way as the image data.

When theimageisinterlaced, each pass of theinterlace pattern istreated as an independent imagefor filtering
purposes. The filters work on the byte sequences formed by the pixels actually transmitted during a pass,
and the “previous scanling’ is the one previoudy transmitted in the same pass, not the one adjacent in the
complete image. Note that the subimage transmitted in any one pass is aways rectangular, but is of smaller
width and/or height than the complete image. Filtering is not applied when this subimage is empty.

For al filters, the bytes “to the left of” the first pixel in a scanline must be treated as being zero. For filters
that refer to the prior scanline, the entire prior scanline must be treated as being zeroes for the first scanline
of an image (or of a pass of an interlaced image).

To reverse the effect of afilter, the decoder must use the decoded values of the prior pixel on the same line,
the pixel immediately above the current pixel onthe prior line, and the pixel just to the left of the pixel above.
Thisimpliesthat at least one scanline’s worth of image datawill have to be stored by the decoder at all times.
Even though some filter types do not refer to the prior scanline, the decoder will always need to store each
scanline asit is decoded, since the next scanline might use afilter that referstoit.

PNG imposes no restriction on which filter types can be applied to an image. However, the filters are not
equaly effective on al types of data. See Recommendations for Encoders: Filter selection (Section 9.6).

See dso Rationale: Filtering (Section 12.9).
6.2 Filter typeO: None

With the None filter, the scanline is transmitted unmodified; it is only necessary to insert a filter type byte
before the data.

6.3 Filter typel: Sub

The Sub filter transmits the difference between each byte and the value of the corresponding byte of the prior
pixel.

To compute the Sub filter, apply the following formulato each byte of the scanline:

28 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

Sub(x) = Raw(x) - Raw(x-bpp)

where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refersto the
raw data byte at that byte position in the scanline, and bpp is defined as the number of bytes per complete
pixel, rounding up to one. For example, for color type 2 with abit depth of 16, bpp isequal to 6 (three samples,
two bytes per sample); for color type 0 with a bit depth of 2, bpp is equal to 1 (rounding up); for color type
4 with abit depth of 16, bpp is equa to 4 (two-byte grayscale sample, plus two-byte alpha sample).

Note this computation isdone for each byte, regardless of bit depth. 1na16-bit image, each MSB is predicted
from the preceding MSB and each LSB from the preceding L SB, because of the way that bpp is defined.

Unsigned arithmetic modulo 256 is used, so that both the inputs and outputs fit into bytes. The sequence of
Sub vauesistransmitted as the filtered scanline.

For all x < 0, assume Raw(x) = 0.

To reverse the effect of the Sub filter after decompression, output the following value:
Sub(x) + Raw(x- bpp)

(computed mod 256), where Raw refers to the bytes already decoded.

6.4 Filter type2: Up
The Up filter isjust like the Sub filter except that the pixel immediately above the current pixel, rather than
just to itsleft, is used as the predictor.
To compute the Up filter, apply the following formula to each byte of the scanline:
Up(x) = Rawm(x) - Prior(x)

where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refersto the
raw data byte at that byte position in the scanline, and Pr i or (x) refersto the unfiltered bytes of the prior
scanline.

Notethisisdonefor each byte, regardless of bit depth. Unsigned arithmetic modulo 256 is used, so that both
the inputs and outputs fit into bytes. The sequence of Up values is transmitted as the filtered scanline.

On the first scanline of an image (or of apass of an interlaced image), assume Prior(x) = 0 for al x.
To reverse the effect of the Up filter after decompression, output the following value:
Up(x) + Prior(x)

(computed mod 256), where Pr i or refers to the decoded bytes of the prior scanline.

6. FILTERALGORITHMS 29

6.5 Filter type 3. Average

The Average filter uses the average of the two neighboring pixels (left and above) to predict the value of a
pixel.

To compute the Average filter, apply the following formulato each byte of the scanline:
Average(x) = Rawm(x) - floor((Raw x-bpp)+Prior(x))/2)

where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to
the raw data byte at that byte position in the scanline, Pri or (X) refers to the unfiltered bytes of the prior
scanline, and bpp is defined as for the Sub filter.

Note thisis done for each byte, regardless of bit depth. The sequence of Aver age valuesis transmitted as
the filtered scanline.

The subtraction of the predicted value from the raw byte must be done modulo 256, so that both the inputs
and outpuits fit into bytes. However, the sum Raw(x- bpp) +Pr i or (x) must be formed without overflow
(using at least nine-bit arithmetic). f | oor () indicates that the result of the division is rounded to the next
lower integer if fractional; in other words, it is an integer division or right shift operation.

For al x < 0, assume Raw(x) = 0. On the first scanline of an image (or of a pass of an interlaced image),
assume Prior(x) = O for dl x.

To reverse the effect of the Average filter after decompression, output the following value:
Aver age(x) + floor((Rawx-bpp)+Prior(x))/?2)

where the result is computed mod 256, but the prediction is calculated in the same way asfor encoding. Raw
refers to the bytes already decoded, and Pr i or refersto the decoded bytes of the prior scanline.

6.6 Filter type4: Paeth

The Paeth filter computes a ssimple linear function of the three neighboring pixels (Ieft, above, upper left),
then chooses as predictor the neighboring pixel closest to the computed value. Thistechniqueisdueto Alan
W. Paeth [PAETH].

To compute the Pageth filter, apply the following formula to each byte of the scanline:

Paet h(x) = Raw(x) - PaethPredictor(Rawm x-bpp), Prior(x),
Prior(x-bpp))

where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to
the raw data byte at that byte position in the scanline, Pri or (X) refers to the unfiltered bytes of the prior
scanline, and bpp is defined as for the Sub filter.

Notethisisdonefor each byte, regardless of bit depth. Unsigned arithmetic modulo 256 is used, so that both
the inputs and outputs fit into bytes. The sequence of Paet h values is transmitted as the filtered scanline.

The PaethPredictor function is defined by the following pseudocode:

30 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

function PaethPredictor (a, b, c)

begi n
; a =1left, b = above, ¢ = upper |eft
p:=a+b-c o initial estimte
pa := abs(p - a) ; distances to a, b, ¢
pb := abs(p - b)
pc := abs(p - ¢)

;. return nearest of a,b,c,
; breaking ties in order a,b,c.
if pa <= pb AND pa <= pc then return a
else if pb <= pc then return b
el se return c
end

The cal culations within the PaethPredi ctor function must be performed exactly, without overflow. Arithmetic
modulo 256 isto be used only for the final step of subtracting the function result from the target byte value.

Note that the order in which tiesare broken is critical and must not be altered. The tie break order is:
pixel to the left, pixel above, pixel to the upper left. (This order differs from that given in Paeth’s article.)

For al x < 0, assume Raw(x) = 0 and Prior(x) = 0. On the first scanline of an image (or of a pass of an
interlaced image), assume Prior(x) = 0 for al x.

To reverse the effect of the Pageth filter after decompression, output the following value:
Paet h(x) + Paet hPredi ctor(Rawx-bpp), Prior(x), Prior(x-bpp))

(computed mod 256), where Rawand Pr i or refer to bytes aready decoded. Exactly the same PaethPredic-
tor function is used by both encoder and decoder.

7 Chunk Ordering Rules

To alow new chunk types to be added to PNG, it is necessary to establish rules about the ordering require-
ments for al chunk types. Otherwise aPNG editing program cannot know what to do when it encounters an
unknown chunk.

We definea®PNG editor” as aprogram that modifies a PNG file and wishes to preserve as much as possible
of the ancillary information in the file. Two examples of PNG editors are a program that adds or modifies
text chunks, and a program that adds a suggested palette to a truecolor PNG file. Ordinary image editors
are not PNG editors in this sense, because they usually discard all unrecognized information while reading
in animage. (Note: we strongly encourage programs handling PNG files to preserve ancillary information
whenever possible.)

As an example of possible problems, consider a hypothetical new ancillary chunk type that is safe-to-copy
and is required to appear after PLTE if PLTE is present. If our program to add a suggested PLTE does not
recognize this new chunk, it may insert PLTE in the wrong place, namely after the new chunk. We could

7. CHUNK ORDERING RULES 31

prevent such problems by requiring PNG editorsto discard all unknown chunks, but that isavery unattractive
solution. Instead, PNG requires ancillary chunks not to have ordering restrictions like this.

To prevent this type of problem while alowing for future extension, we put some constraints on both the
behavior of PNG editors and the allowed ordering requirements for chunks.

7.1 Behavior of PNG editors

The rules for PNG editors are;

¢ When copying an unknown unsafe-to-copy ancillary chunk, a PNG editor must not move the chunk
relative to any critical chunk. It can relocate the chunk freely relative to other ancillary chunks that
occur between the same pair of critical chunks. (This is well defined since the editor must not add,
delete, modify, or reorder critical chunksif it is preserving unknown unsafe-to-copy chunks.)

¢ When copying an unknown safe-to-copy ancillary chunk, aPNG editor must not move the chunk from
before | DAT to after | DAT or viceversa. (Thisiswell defined because | DAT is aways present.) Any
other reordering is permitted.

¢ When copying a known ancillary chunk type, an editor need only honor the specific chunk ordering
rules that exist for that chunk type. However, it can aways choose to apply the above genera rules
instead.

e PNG editors must give up on encountering an unknown critical chunk type, because there is no way
to be certain that a valid file will result from modifying a file containing such a chunk. (Note that
simply discarding the chunk is not good enough, because it might have unknown implications for the
interpretation of other chunks.)

These rules are expressed in terms of copying chunks from an input file to an output file, but they apply in
the obvious way if a PNG fileis modified in place.

See aso Chunk naming conventions (Section 3.3).

7.2 Ordering of ancillary chunks

The ordering rules for an ancillary chunk type cannot be any stricter than this:
e Unsafe-to-copy chunks can have ordering requirements relative to critical chunks.
e Safe-to-copy chunks can have ordering requirements relative to | DAT.

Theactual ordering rulesfor any particular ancillary chunk type may be weaker. Seefor example the ordering
rules for the standard ancillary chunk types (Summary of standard chunks, Section 4.3).

Decoders must not assume mor e about the positioning of any ancillary chunk than is specified by the
chunk ordering rules. In particular, it is never valid to assume that a specific ancillary chunk type occurs
with any particular positioning relative to other ancillary chunks. (For example, it is unsafe to assume that

32 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

your private ancillary chunk occurs immediately before | END. Even if your application always writes it
there, a PNG editor might have inserted some other ancillary chunk after it. But you can safely assume that
your chunk will remain somewhere between | DAT and | END.)

7.3 Ordering of critical chunks

Critical chunks can have arbitrary ordering requirements, because PNG editors are required to give up if they
encounter unknown critical chunks. For example, | HDR has the specia ordering rule that it must aways
appear first. A PNG editor, or indeed any PNG-writing program, must know and follow the ordering rules
for any critical chunk type that it can emit.

8 Miscellaneous Topics

8.1 Filenameextension

On systems where file names customarily include an extension signifying file type, the extension “. png” is
recommended for PNG files. Lower case “. png” is preferred if file names are case-sensitive.

8.2 Internet mediatype

The PNG authors intend to register “i mage/ png” asthe Internet Media Type for PNG [RFC-1521, RFC-
1590]. At the date of this document, the media type registration process had not been completed. It is rec-
ommended that implementations also recognize the interim mediatype “i mage/ x- png”.

8.3 Macintosh file layout

In the Apple Macintosh system, the following conventions are recommended:

¢ The four-byte file type code for PNG filesis “PNG ”. (This code has been registered with Apple for
PNG files.) The creator code will vary depending on the creating application.

e The contents of the data fork must be a PNG file exactly as described in the rest of this specification.

e The contents of the resource fork are unspecified. It may be empty or may contain application-
dependent resources.

¢ Whentransferring aMacintosh PNG fileto anon-Macintosh system, only the datafork should betrans-
ferred.

9. RECOMMENDATIONS FOR ENCODERS 33

8.4 Multiple-image extension

PNG itsdf is gtrictly a single-image format. However, it may be necessary to store multiple images within
onefile; for example, thisis needed to convert some GIF files. In the future, a multiple-image format based
on PNG may be defined. Such aformat will be considered a separate file format and will have a different
signature. PNG-supporting applications may or may not choose to support the multiple-image format.

See Rationale: Why not these features? (Section 12.3).

8.5 Security considerations

A PNG file or datastream is composed of a collection of explicitly typed “chunks’. Chunks whose contents
are defined by the specification could actually contain anything, including malicious code. But there is no
known risk that such malicious code could be executed on the recipient’s computer as a result of decoding
the PNG image.

The possible security risks associated with future chunk types cannot be specified at thistime. Security issues
will be considered when evaluating chunks proposed for registration as public chunks. Thereisno additional
security risk associated with unknown or unimplemented chunk types, because such chunks will beignored,
or at most be copied into another PNG file.

Thet EXt and zTXt chunks contain data that is meant to be displayed as plain text. It is possible that if
the decoder displays such text without filtering out control characters, especialy the ESC (escape) character,
certain systems or terminals could behave in undesirable and insecure ways. We recommend that decoders
filter out control characters to avoid this risk; see Recommendations for Decoders: Text chunk processing
(Section 10.11).

Because every chunk’s length is available at its beginning, and because every chunk has a CRC trailer, there
is avery robust defense against corrupted data and against fraudulent chunks that attempt to overflow the
decoder’s buffers. Also, the PNG signature bytes provide early detection of common filetransmission errors.

A decoder that failsto check CRCs could be subject to data corruption. The only likely consequence of such
corruption is incorrectly displayed pixels within the image. Worse things might happen if the CRC of the
I HDR chunk isnot checked and the width or height fields are corrupted. See Recommendations for Decoders:
Error checking (Section 10.1).

A poorly written decoder might be subject to buffer overflow, because chunks can be extremely large, up to
(2°31)-1 byteslong. But properly written decoders will handle large chunks without difficulty.

9 Recommendationsfor Encoders

This chapter gives some recommendations for encoder behavior. The only absolute requirement on a PNG
encoder isthat it produce files that conform to the format specified in the preceding chapters. However, best
results will usually be achieved by following these recommendations.

34 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

9.1 Sampledepth scaling

When encoding input samples that have a sample depth that cannot be directly represented in PNG, the en-
coder must scal e the samples up to asample depth that isallowed by PNG. The most accurate scaling method
isthe linear equation

out put = ROUND(i nput * MAXOUTSAMPLE / MAXI NSAMPLE)

where the input samples range from 0 to MAXINSAMPL E and the outputs range from 0 to MAXOUTSAM-
PLE (which is (2"sampledepth)-1).

A close approximation to the linear scaling method can be achieved by “left bit replication”, which isshifting
thevalid bitsto begin in the most significant bit and repeating the most significant bitsinto the open bits. This
method is often faster to compute than linear scaling. As an example, assume that 5-bit samples are being
scaled up to 8 hits. If the source sample value is 27 (in the range from 0-31), then the original bits are:

Left bit replication gives avalue of 222
76543 210

11011 110
| :::::::l ===

| Leftnost Bits Repeated to Fill Open Bits

Original Bits

which matches the value computed by the linear equation. Left bit replication usually gives the same value
as linear scaling, and is never off by more than one.

A distinctly less accurate approximation is obtained by simply left-shifting the input value and filling the
low order bits with zeroes. This scheme cannot reproduce white exactly, since it does not generate an all-
ones maximum value; the net effect is to darken the image dightly. This method is not recommended in
general, but it does have the effect of improving compression, particularly when dealing with greater-than-
eight-bit sample depths. Sincetherelative error introduced by zero-fill scaling issmall at high sample depths,
some encoders may choose to useit. Zero-fill must not be used for apha channel data, however, since many
decoderswill specia-case alphavalues of all zeroesand al ones. Itisimportant to represent both those values
exactly in the scaled data.

When the encoder writes an sBI T chunk, it is required to do the scaling in such away that the high-order
bits of the stored samples match the original data. That is, if the sBI T chunk specifies a sample depth of S,
the high-order S bits of the stored data must agree with the original S-bit data values. This allows decoders
to recover the original data by shifting right. The added low-order bits are not constrained. Note that all the
above scaling methods meet this restriction.

9. RECOMMENDATIONS FOR ENCODERS 35

When scaling up source data, it is recommended that the low-order bits befilled consistently for all samples;
that is, the same source value should generate the same sample value at any pixel position. This improves
compression by reducing the number of distinct sample values. However, thisisnot arequirement, and some
encoders may choose not to follow it. For example, an encoder might instead dither the low-order bits, im-
proving displayed image quality at the price of increasing file size.

In some applications the origina source data may have arange that is not a power of 2. The linear scaling
equation still works for this case, athough the shifting methods do not. It is recommended that ansBI T
chunk not be written for such images, since sBI T suggests that the original data range was exactly 0..2°S-1.

9.2 Encoder gamma handling

See Gamma Tutorial (Chapter 13) if you aren't aready familiar with gamma issues.

Proper handling of gamma encoding and the gAMA chunk in an encoder depends on the prior history of the
sample values and on whether these values have already been quantized to integers.

If the encoder has access to sampleintensity values in floating-point or high-precision integer form (perhaps
from acomputer image renderer), then it isrecommended that the encoder perform its own gammaencoding
before quantizing the data to integer values for storage in the file. Applying gamma encoding at this stage
results in images with fewer banding artifacts at a given sample depth, or allows smaller samples while re-
taining the same visua quality.

A linear intensity level, expressed as afloating-point value in the range 0 to 1, can be converted to agamma-
encoded sample vaue by

sanple = ROUND((intensity = encoder_ganmm) * MAXSAMPLE)

Thefile_gammavaueto bewritten in the PNG g AMA chunk is the same as encoder_gamma in this equation,
since we are assuming the initial intensity value islinear (in effect, camera_gammais 1.0).

If the image is being written to afile only, the encoder_gamma value can be selected somewhat arbitrarily.
Values of 0.45 or 0.5 are generally good choices because they are common in video systems, and so most
PNG decoders should do agood job displaying such images.

Some image renderers may simultaneously write the image to a PNG file and display it on-screen. The dis-
played pixels should be gamma corrected for the display system and viewing conditions in use, so that the
user sees a proper representation of the intended scene. An appropriate gamma correction value is

screen_gc = viewi ng_gamma / di spl ay_gamma

If the renderer wants to write the same gamma-corrected sample values to the PNG file, avoiding a separate
gamma-encoding step for file output, then this screen_gc value should be written in the gAMA chunk. This
will allow a PNG decoder to reproduce what the file's originator saw on screen during rendering (provided
the decoder properly supports arbitrary values in a g AMA chunk).

However, itisequally reasonable for arenderer to apply gammacorrection for screen display using agamma
appropriate to the viewing conditions, and to separately gamma-encode the sample values for file storage

36 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

using a standard value of gamma such as 0.5. In fact, thisis preferable, since some PNG decoders may not
accurately display images with unusual gANMA values.

Computer graphics renderers often do not perform gamma encoding, instead making sample values directly
proportional to scenelight intensity. 1f the PNG encoder receives sample values that have already been quan-
tized into linear-light integer values, thereisno point in doing gammaencoding onthem; that would just result
in further loss of information. The encoder should just write the sample valuesto the PNGfile. This“linear”
sample encoding is equivalent to gamma encoding with agamma of 1.0, so graphics programs that produce
linear samples should always emit a gAMA chunk specifying a gamma of 1.0.

When the sample values come directly from a piece of hardware, the correct gAMA value is determined by
the gamma characteristic of the hardware. In the case of video digitizers (“frame grabbers’), gAMA should
be 0.45 or 0.5 for NTSC (possibly less for PAL or SECAM) since video cameratransfer functions are stan-
dardized. Image scanners are less predictable. Their output samples may be linear (gamma 1.0) since CCD
sensors themselves are linear, or the scanner hardware may have aready applied gamma correction designed
to compensate for dot gain in subsequent printing (gamma of about 0.57), or the scanner may have corrected
the samplesfor display on aCRT (gammaof 0.4-0.5). You will need to refer to the scanner’s manual, or even
scan acalibrated gray wedge, to determine what a particular scanner does.

File format converters generally should not attempt to convert supplied images to a different gamma. Store
the data in the PNG file without conversion, and record the source gammaif it is known. Gamma alteration
at file conversion time causes re-quantization of the set of intensity levels that are represented, introducing
further roundoff error with little benefit. It's almost always better to just copy the sample values intact from
the input to the output file.

In some cases, the supplied image may bein an image format (e.g., TIFF) that can describe the gamma char-
acteristic of theimage. In such cases, afile format converter is strongly encouraged to write a PNG gAVA
chunk that corresponds to the known gamma of the source image. Note that some file formats specify the
gamma of the display system, not the camera. If the input file's gammavalue is greater than 1.0, it isamost
certainly adisplay system gamma, and you should use its reciprocal for the PNG gANA.

If the encoder or file format converter does not know how an image was originally created, but does know
that the image has been displayed satisfactorily on a display with gamma display_gamma under lighting
conditions where a particular viewing_gamma is appropriate, then the image can be marked as having the
file_ gamma:

file_ganma = viewi ng_gamma / di splay_gamma
Thiswill allow viewers of the PNG file to see the same image that the person running the file format con-
verter saw. Although this may not be precisely the correct value of the image gamma, it’s better to write a

gANMA chunk with an approximately right value than to omit the chunk and force PNG decoders to guess at
an appropriate gamma.

On the other hand, if theimagefile is being converted as part of a“bulk” conversion, with no one looking at
each image, then it is better to omit the gAMA chunk entirely. 1f the image gammahasto be guessed &, leave
it to the decoder to do the guessing.

Gamma does not apply to apha samples; adphais aways represented linearly.

9. RECOMMENDATIONS FOR ENCODERS 37

See a'so Recommendations for Decoders: Decoder gamma handling (Section 10.5).

9.3 Encoder color handling

See Color Tutorial (Chapter 14) if you aren’'t already familiar with color issues.

If it is possible for the encoder to determine the chromaticities of the source display primaries, or to make
a strong guess based on the origin of the image or the hardware running it, then the encoder is strongly en-
couraged to output the c HRMchunk. If it does so, the g AMA chunk should also be written; decoders can do
little with c HRMif gAMA is missing.

Video created with recent video equipment probably usesthe CCIR 709 primaries and D65 white point [I TU-
BT709], which are;

R G B Wi te
X 0. 640 0. 300 0. 150 0. 3127
y 0. 330 0. 600 0. 060 0. 3290
An older but still very popular video standard is SMPTE-C [SMPTE-170M]:
R G B Wiite
X 0. 630 0. 310 0. 155 0. 3127
y 0. 340 0. 595 0. 070 0. 3290

The original NTSC color primaries have not been used in decades. Although you may till find the NTSC
numbers listed in standards documents, you won't find any images that actually use them.

Scanners that produce PNG files as output should insert the filter chromaticities into a c HRMchunk and the
camera_gamma into a g AMA chunk.

In the case of hand-drawn or digitally edited images, you have to determine what monitor they were viewed
on when being produced. Many image editing programs alow you to specify what type of monitor you are
using. Thisis often because they are working in some device-independent space internally. Such programs
have enough information to write valid c HRMand g AMA chunks, and should do so automatically.

If the encoder is compiled as a portion of a computer image renderer that performs full-spectral rendering,
the monitor values that were used to convert from theinternal device-independent color space to RGB should
be written into the c HRMchunk. Any colors that are outside the gamut of the chosen RGB device should be
clipped or otherwise constrained to be within the gamut; PNG does not store out of gamut colors.

If the computer image renderer performs cal cul ations directly in device-dependent RGB space, ac HRMchunk
should not be written unless the scene description and rendering parameters have been adjusted to look good
on aparticular monitor. Inthat case, the data for that monitor (if known) should be used to construct a cHRM
chunk.

There are often cases where an image's exact origins are unknown, particularly if it began life in some other
format. A few image formats store calibration information, which can be used to fill in the c HRMchunk. For
example, all PhotoCD images usethe CCIR 709 primaries and D65 whitepoint, so these values can bewritten

38 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

into the c HRMchunk when converting a PhotoCD file. PhotoCD also uses the SMPTE-170M transfer func-
tion, which is closely approximated by a gAMA of 0.5. (PhotoCD can store colors outside the RGB gamut,
so the image data will require gamut mapping before writing to PNG format.) TIFF 6.0 files can optionally
store calibration information, which if present should be used to construct the cHRMchunk. GIF and most
other formats do not store any calibration information.

Itisnot recommended that file format converters attempt to convert supplied imagesto adifferent RGB color
space. Storethedatain the PNG filewithout conversion, and record the source primary chromaticitiesif they
are known. Color space transformation at file conversion time is a bad idea because of gamut mismatches
and rounding errors. Aswith gamma conversions, it’s better to store the datalosslessly and incur at most one
conversion when the image isfinally displayed.

See also Recommendations for Decoders. Decoder color handling (Section 10.6).

9.4 Alphachannel creation

The alpha channel can be regarded either as amask that temporarily hides transparent parts of the image, or
as ameans for constructing a non-rectangular image. In the first case, the color values of fully transparent
pixels should be preserved for future use. In the second case, the transparent pixels carry no useful data and
are simply there to fill out the rectangular image arearequired by PNG. In this case, fully transparent pixels
should all be assigned the same color value for best compression.

Image authors should keep in mind the possibility that a decoder will ignore transparency control. Hence,
the colors assigned to transparent pixels should be reasonable background colors whenever feasible.

For applications that do not require afull alphachannel, or cannot afford the price in compression efficiency,
the t RNS transparency chunk is also available.

If the image has a known background color, this color should be written in the bKGD chunk. Even decoders
that ignore transparency may use the bKGD color to fill unused screen area.

If the original image has premultiplied (also called “associated”) alpha data, convert it to PNG’s non-
premultiplied format by dividing each sample vaue by the corresponding alpha value, then multiplying by
the maximum value for the image bit depth, and rounding to the nearest integer. In valid premultiplied data,
the sample values never exceed their corresponding alphavalues, so the result of the division should dways
beintherange 0 to 1. If the alpha value is zero, output black (zeroes).

9.5 Suggested palettes

A PLTE chunk can appear in truecolor PNG files. In such files, the chunk isnot an essential part of theimage
data, but simply represents a suggested palette that viewers may use to present the image on indexed-color
display hardware. A suggested palette is of no interest to viewers running on truecolor hardware.

If an encoder chooses to provide a suggested palette, it is recommended that ahl ST chunk also be written
to indicate the relative importance of the palette entries. The histogram values are most easily computed

9. RECOMMENDATIONS FOR ENCODERS 39

as “nearest neighbor” counts, that is, the approximate usage of each palette entry if no dithering is applied.
(These counts will often be available for free as a consequence of developing the suggested palette.)

For images of color type 2 (truecol or without alpha channel), itisrecommended that the pal ette and histogram
be computed with reference to the RGB dataonly, ignoring any transparent-color specification. If thefileuses
transparency (has at RNS chunk), viewers can easily adapt the resulting palette for use with their intended
background color. They need only replace the palette entry closest to thet RNS color with their background
color (which may or may not match the file's bKGD color, if any).

For images of color type 6 (truecolor with apha channdl), it is recommended that a bKGD chunk appear and
that the palette and histogram be computed with reference to the image as it would appear after composit-
ing against the specified background color. This definition is necessary to ensure that useful palette entries
are generated for pixels having fractional alpha values. The resulting palette will probably only be useful
to viewers that present the image against the same background color. It is recommended that PNG editors
delete or recompute the palette if they alter or remove the bKGD chunk in an image of color type 6. If PLTE
appears without bKGDin an image of color type 6, the circumstances under which the pal ette was computed
are unspecified.

9.6 Filter selection

For images of color type 3 (indexed color), filter type 0 (None) isusually the most effective. Note that color
images with 256 or fewer colors should almost always be stored in indexed color format; truecolor format is
likely to be much larger.

Filter type O is also recommended for images of bit depths less than 8. For low-bit-depth grayscale images,
it may be anet win to expand the image to 8-bit representation and apply filtering, but thisisrare.

For truecolor and grayscale images, any of the five filters may prove the most effective. If an encoder uses a
fixed filter, the Paeth filter is most likely to be the best.

For best compression of truecolor and grayscale images, we recommend an adaptive filtering approach in
which afilter is chosen for each scanline. The following simple heuristic has performed well in early tests:
compute the output scanline using al fivefilters, and select the filter that gives the smallest sum of absolute
values of outputs. (Consider the output bytes as signed differences for thistest.) This method usually outper-
forms any single fixed filter choice. However, it islikely that much better heuristics will be found as more
experience is gained with PNG.

Filtering according to these recommendations is effective on interlaced as well as noninterlaced images.
9.7 Text chunk processing
A nonempty keyword must be provided for each text chunk. The generic keyword “Comment” can be used

if no better description of the text is available. If a user-supplied keyword is used, be sure to check that it
meets the restrictions on keywords.

40 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

PNG text strings are expected to use the Latin-1 character set. Encoders should avoid storing characters that
are not defined in Latin-1, and should provide character code remapping if thelocal system’s character setis
not Latin-1.

Encoders should discourage the creation of single lines of text longer than 79 characters, in order to facilitate
easy reading.

It is recommended that text items less than 1K (1024 bytes) in size should be output using uncompressed
t EXt chunks. In particular, it is recommended that the basic title and author keywords should always be
output using uncompressed t EXt chunks. Lengthy disclaimers, on the other hand, are idea candidates for
ZTXt.

Placing larget EXt and zTXt chunks after the image data (after | DAT) can speed up image display in some
situations, since the decoder won't have to read over the text to get to the image data. But it isrecommended
that small text chunks, such as the imagetitle, appear before | DAT.

9.8 Useof private chunks

Applications can use PNG private chunks to carry information that need not be understood by other applica-
tions. Such chunks must be given names with lowercase second letters, to ensure that they can never conflict
with any future public chunk definition. Note, however, that there isno guarantee that some other application
will not use the same private chunk name. If you use a private chunk type, it is prudent to store additional
identifying information at the beginning of the chunk data

Use an ancillary chunk type (lowercase first |etter), not acritical chunk type, for al private chunks that store
information that is not absolutely essential to view theimage. Creation of private critical chunksis discour-
aged because they render PNG files unportable. Such chunks should not be used in publicly available soft-
wareor files. If private critical chunks are essentia for your application, it is recommended that one appear
near the start of the file, so that a standard decoder need not read very far before discovering that it cannot
handle the file.

If you want others outside your organization to understand a chunk type that you invent, contact the main-
tainers of the PNG specification to submit a proposed chunk name and definition for addition to the list of
special-purpose public chunks (see Additional chunk types, Section 4.4). Note that a proposed public chunk
name (with uppercase second letter) must not be used in publicly available software or files until registration
has been approved.

If an ancillary chunk contains textual information that might be of interest to a human user, you should not
create a special chunk type for it. Instead use at EXt chunk and define a suitable keyword. That way, the
information will be available to users not using your software.

Keywordsint EXt chunks should be reasonably self-explanatory, since the ideaisto let other users figure
out what the chunk contains. If of general usefulness, new keywords can be registered with the maintainers
of the PNG specification. But it is permissible to use keywords without registering them first.

10. RECOMMENDATIONS FOR DECODERS 41

9.9 Privatetype and method codes

This specification defines the meaning of only some of the possible values of some fields. For example,
only compression method 0 and filter types O through 4 are defined. Numbers greater than 127 must be used
when inventing experimental or private definitions of values for any of these fields. Numbers below 128 are
reserved for possible future public extensions of this specification. Note that use of private type codes may
render afile unreadable by standard decoders. Such codes are strongly discouraged except for experimental
purposes, and should not appear in publicly available software or files.

10 Recommendations for Decoders

This chapter gives some recommendations for decoder behavior. The only absolute requirement on a PNG
decoder is that it successfully read any file conforming to the format specified in the preceding chapters.
However, best results will usually be achieved by following these recommendations.

10.1 Error checking

To ensure early detection of common file-transfer problems, decoders should verify that al eight bytes of
the PNG file signature are correct. (See Rationale: PNG file signature, Section 12.11.) A decoder can have
additional confidence in thefile' sintegrity if the next eight bytes are an| HDR chunk header with the correct
chunk length.

Unknown chunk types must be handled as described in Chunk naming conventions (Section 3.3). An un-
known chunk typeis not to be treated as an error unlessit isacritical chunk.

It is strongly recommended that decoders should verify the CRC on each chunk.

In some situations it is desirable to check chunk headers (length and type code) before reading the chunk
data and CRC. The chunk type can be checked for plausibility by seeing whether al four bytes are ASCI|
letters (codes 65-90 and 97-122); note that this need only be done for unrecognized type codes. If the total
file sizeis known (from file system information, HT TP protocol, etc), the chunk length can be checked for
plausibility aswell.

If CRCs are not checked, dropped/added data bytes or an erroneous chunk length can cause the decoder to
get out of step and misinterpret subsequent data as a chunk header. Verifying that the chunk type contains
letters is an inexpensive way of providing early error detection in this situation.

For known-length chunks such as| HDR, decoders should treat an unexpected chunk length asan error. Future
extensions to this specification will not add new fields to existing chunks; instead, new chunk types will be
added to carry new information.

Unexpected valuesin fields of known chunks (for example, an unexpected compression method in the | HDR
chunk) must be checked for and treated as errors. However, it is recommended that unexpected field values
be treated as fatal errors only in critical chunks. An unexpected value in an ancillary chunk can be handled

42 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

by ignoring the whole chunk as though it were an unknown chunk type. (This recommendation assumes that
the chunk’s CRC has been verified. In decoders that do not check CRCs, it is safer to treat any unexpected
value as indicating a corrupted file.)

10.2 Pixel dimensions

Non-square pixels can berepresented (seethe pHYs chunk), but viewers are not required to account for them;
aviewer can present any PNG file as though its pixels are square.

Conversely, viewers running on display hardware with non-square pixels are strongly encouraged to rescale
images for proper display.

10.3 Truecolor image handling

To achieve PNG'sgoal of universal interchangeability, decoders are required to accept all types of PNG im-
age: indexed-color, truecolor, and grayscale. Viewersrunning on indexed-color display hardware need to be
able to reduce truecolor images to indexed format for viewing. This process is usually called “color quanti-
zation”.

A smple, fast way of doing thisis to reduce the image to a fixed palette. Palettes with uniform color spac-
ing (“color cubes’) are usually used to minimize the per-pixel computation. For photograph-like images,
dithering is recommended to avoid ugly contours in what should be smooth gradients; however, dithering
introduces graininess that can be objectionable.

The quality of rendering can be improved substantially by using a palette chosen specifically for the image,
since a color cube usualy has numerous entries that are unused in any particular image. This approach re-
quires more work, first in choosing the palette, and second in mapping individua pixelsto the closest avail-
able color. PNG allows the encoder to supply a suggested paette in a PLTE chunk, but not all encoders will
do so, and the suggested palette may be unsuitable in any case (it may have too many or too few colors).
High-quality viewers will therefore need to have a palette selection routine at hand. A large lookup tableis
usually the most feasible way of mapping individual pixels to palette entries with adequate speed.

Numerous implementations of color quantization are available. The PNG reference implementation, libpng,
includes cade for the purpose.

10.4 Sampledepth rescaling

Decoders may wish to scale PNG data to a lesser sample depth (data precision) for display. For example,
16-bit data will need to be reduced to 8-hit depth for use on most present-day display hardware. Reduction
of 8-bit data to 5-bit depth is also common.

The most accurate scaling is achieved by the linear equation

out put = ROUND(i nput * MAXOUTSAMPLE / MAXI NSAVPLE)

10. RECOMMENDATIONS FOR DECODERS 43

where

MAXI NSAMPLE = (2" sanpl edept h) -1
MAXOQUTSAMPLE = (2" desi red_sanpl edepth) -1

A dightly less accurate conversion is achieved by simply shifting right by
sanpl edept h- desi r ed_sanpl edept h places. For example, to reduce 16-bit samples to 8-hit,
one need only discard the low-order byte. In many situations the shift method is sufficiently accurate for
display purposes, and it is certainly much faster. (But if gamma correction is being done, sample rescaling
can be merged into the gamma correction lookup table, asisillustrated in Decoder gammahandling, Section
10.5)

When an sBI T chunk is present, the original pre-PNG data can be recovered by shifting right to the sample
depth specified by sBI T. Note that linear scaling will not necessarily reproduce the original data, because
the encoder is not required to have used linear scaling to scale the data up. However, the encoder is required
to have used a method that preserves the high-order bits, so shifting aways works. Thisisthe only casein
which shifting might be said to be more accurate than linear scaling.

When comparing pixel values to t RNS chunk values to detect transparent pixels, it is necessary to do the
comparison exactly. Therefore, transparent pixel detection must be done before reducing sample precision.

10.5 Decoder gamma handling

See Gamma Tutoria (Chapter 13) if you aren’t already familiar with gamma issues.

To produce correct tone reproduction, a good image display program should take into account the gammas
of theimage file and the display device, aswell asthe viewing_gamma appropriate to the lighting conditions
near the display. This can be done by calculating

gbright = insanple / MAXI NSAMPLE

bright = gbright ©~ (1.0 / file_gamm)
vbright = bright ~ view ng_gamma

gcvideo = vbright = (1.0 / display_gamm)
fbval = ROUND(gcvi deo * MAXFBVAL)

where MAXI NSAMPLE is the maximum sample value in the file (255 for 8-bit, 65535 for 16-hit, etc),
MAXFBVAL is the maximum value of aframe buffer sasmple (255 for 8-bit, 31 for 5-bit, etc), i nsanpl e
is the value of the sample in the PNG file, and f bval is the value to write into the frame buffer. The first
line converts from integer samplesinto anormalized 0to 1 floating point val ue, the second undoes the gamma
encoding of the image file to produce a linear intensity value, the third adjusts for the viewing conditions,
the fourth corrects for the display system’s gamma value, and the fifth converts to an integer frame buffer
sample. In practice, the second through fourth lines can be merged into

gcvideo = gbright”(viewi ng_gamma / (fil e_gamma*di spl ay_ganmma))

so asto perform only one power calculation. For color images, the entire calculation is performed separately
for R, G, and B values.

44 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

Itisnot necessary to perform transcendental math for every pixel. Instead, compute alookup table that gives
the correct output value for every possible sample value. This requires only 256 calculations per image (for
8-bit accuracy), not one or three calculations per pixel. For an indexed-color image, a one-time correction
of the palette is sufficient, unless the image uses transparency and is being displayed against a nonuniform
background.

In some cases even the cost of computing a gamma lookup table may be a concern. In these cases, viewers
are encouraged to have precomputed gamma correction tables for file_gamma values of 1.0 and 0.5 with
some reasonable choice of viewing_gamma and display_gamma, and to use the table closest to the gamma
indicated in the file. Thiswill produce acceptable results for the mgjority of red files.

When theincoming image has unknown gamma (no gAMA chunk), choose alikely default file_gammavalue,
but alow the user to select a new one if the result proves too dark or too light.

In practice, it is often difficult to determine what value of display_gamma should be used. In systemswith no
built-in gamma correction, the display_gammais determined entirely by the CRT. Assuming aCRT_gamma
of 2.5 isrecommended, unless you have detailed calibration measurements of this particular CRT available.

However, many modern frame buffers have lookup tables that are used to perform gamma correction, and
on these systems the display_gamma value should be the gamma of the lookup table and CRT combined.
You may not be able to find out what the lookup table contains from within an image viewer application,
S0 you may have to ask the user what the system’s gamma value is. Unfortunately, different manufacturers
use different ways of specifying what should go into the lookup table, so interpretation of the system gamma
value is system-dependent. Gamma Tutoria (Chapter 13) gives some examples.

The response of rea displays is actually more complex than can be described by a single number (dis-
play_gamma). If actual measurements of the monitor’s light output as afunction of voltage input are avail-
able, the fourth and fifth lines of the computation above can be replaced by alookup in these measurements,
to find the actua frame buffer value that most nearly gives the desired brightness.

The vaue of viewing_gamma depends on lighting conditions; see Gamma Tutorial (Chapter 13) for more
detail. Idedlly, a viewer would allow the user to specify viewing_gamma, either directly numericaly, or
via selecting from “bright surround”, “dim surround”, and “dark surround” conditions. Viewers that don’t
want to do this should just assume avaue for viewing_gamma of 1.0, since most computer displays livein
brightly-lit rooms.

When viewing images that are digitized from video, or that are destined to become video frames, the user
might want to set the viewing_gammato about 1.25 regardless of the actual level of room lighting. Thisvalue
of viewing_gammais “built into” NTSC video practice, and displaying an image with that viewing_gamma
allowsthe user to seewhat a TV set would show under the current room lighting conditions. (Thisisnot the
same thing as trying to obtain the most accurate rendition of the content of the scene, which would require
adjusting viewing_gamma to correspond to the room lighting level.) Thisis another reason viewers might
want to alow usersto adjust viewing_gamma directly.

10. RECOMMENDATIONS FOR DECODERS 45

10.6 Decoder color handling

See Color Tutorial (Chapter 14) if you aren’t already familiar with color issues.

In many cases, decoders will treat image data in PNG files as device-dependent RGB data and display it
without modification (except for appropriate gamma correction). This provides the fastest display of PNG
images. But unless the viewer uses exactly the same display hardware as the origina image author used,
the colors will not be exactly the same as the original author saw, particularly for darker or near-neutral col-
ors. The cHRMchunk provides information that allows closer color matching than that provided by gamma
correction alone.

Decoders can use the c HRMdatato transform theimage datafrom RGB to XY Z and thence into aperceptually
linear color space such asCIE LAB. They can then partition the colorsto generate an optimal palette, because
the geometric distance between two colorsin CIE LAB isstrongly related to how different those colors appear
(unlike, for example, RGB or XY Z spaces). Theresulting palette of colors, once transformed back into RGB
color space, could be used for display or written into a PLTE chunk.

Decodersthat are part of image processing applications might also transform image datainto CIE LAB space
for analysis.

In applicationswhere color fidelity iscritical, such asproduct design, scientific visualization, medicine, archi-
tecture, or advertising, decoders can transform the image data from source RGB to the display RGB space
of the monitor used to view theimage. Thisinvolves calculating the matrix to go from source_RGB to XY Z
and the matrix to go from XY Z to display_RGB, then combining them to produce the overall transformation.
The decoder is responsible for implementing gamut mapping.

Decoders running on platformsthat have a Color Management System (CM S) can pass theimage data, gAMA
and c HRMvalues to the CM Sfor display or further processing.

Decoders that provide color printing facilities can use the facilities in Level 2 PostScript to specify image
datain calibrated RGB space or in a device-independent color space such as XY Z. Thiswill provide better
color fidelity than asimple RGB to CMYK conversion. The PostScript L anguage Reference manua gives
examples of this process [POSTSCRIPT]. Such decoders are responsible for implementing gamut mapping
between source RGB (specified in the c HRMchunk) and the target printer. The PostScript interpreter isthen
responsible for producing the required colors.

Decoders can use the cHRMdata to caculate an accurate grayscale representation of a color image. Con-
version from RGB to gray issimply a case of caculating the Y (luminance) component of XYZ, whichisa
weighted sum of the R G and B values. The weights depend on the monitor type, i.e., the valuesin the c HRM
chunk. Decoders may wish to do this for PNG files with no cHRMchunk. In that case, areasonable default
would bethe CCIR 709 primaries [I TU-BT709]. Do not use the original NTSC primaries, unless you really
do have an image color-balanced for such a monitor. Few monitors ever used the NTSC primaries, so such
images are probably nonexistent these days.

46 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

10.7 Background color

The background color given by bKGDwill typically be used to fill unused screen space around the image, as
well as any transparent pixels within the image. (Thus, bKGDis valid and useful even when the image does
not use trangparency.) If no bKGD chunk is present, the viewer will need to make its own decision about a
suitable background color.

Viewers that have a specific background against which to present the image (such as Web browsers) should
ignore the bKGD chunk, in effect overriding bKGD with their preferred background color or background im-

age.

The background color given by bKGD is not to be considered transparent, even if it happens to match the
color given by t RNS (or, in the case of an indexed-color image, refers to a palette index that is marked as
transparent by t RNS). Otherwise one would have to imagine something “behind the background” to com-
posite against. The background color is either used as background or ignored; it is not an intermediate layer
between the PNG image and some other background.

Indeed, it will be common that bKGDand t RNS specify the same color, since then adecoder that does not im-
plement transparency processing will give the intended display, at least when no partially-transparent pixels
are present.

10.8 Alphachannel processing

Inthe most general case, the alphachannel can be used to composite aforeground image against abackground
image; the PNG file defines the foreground image and the transparency mask, but not the background image.
Decoders are not required to support this most general case. It is expected that most will be able to support
compositing against a single background color, however.

The eguation for computing a composited sample valueis
out put = al pha * foreground + (1-al pha) * background

where apha and the input and output sample values are expressed as fractions in the range 0 to 1. Thiscom-
putation should be performed with linear (non-gamma-encoded) sample values. For color images, the com-
putation is done separately for R, G, and B samples.

Thefollowing codeillustrates the general case of compositing aforeground image over abackground image.
It assumes that you have the original pixel data available for the background image, and that output isto a
frame buffer for display. Other variants are possible; see the comments below the code. The code alowsthe
sample depths and gamma values of foreground image, background image, and frame buffer/CRT all to be
different. Don’'t assume they are the same without checking.

This code is standard C, with line numbers added for reference in the comments bel ow.

10. RECOMMENDATIONS FOR DECODERS

01
02
03
04
05
06
07
08
09

10
11
12

13

nt
nt
nt
nt
nt
nt
nt

foreground[4]; /* image pixel: R G B, A */
background[3]; /* background pixel: R G B */
fbpi x[3] ; /* frame buffer pixel */
fg_maxsanmpl e; /* foreground max sanple */
bg_maxsanpl e; /* background max sanple */
fb_maxsanpl e; [* frame buffer max sanple */

i al pha;

fl oat al pha, conpal pha;
float ganfg, linfg, ganbg, |inbg, conppix, gcvideo;

/* Get max sanple values in data and frane buffer */
fg _maxsanple = (1 « fg_sanple_depth) - 1

bg_maxsanpl e
fb_maxsanpl e

/*

*

*

* %k kX %

/

(1 « bg_sanple_depth) - 1
(1 « frame_buffer_sanple_depth) - 1;

Get integer version of al pha.
Check for opaque and transparent special cases;
no conpositing needed if so.

We show t he whol e ganma decode/ correct process in
floating point, but it would nore |likely be done
wi th | ookup tables.

i al pha = foreground[3];

47

14

15
16

17
18
19
20
21
22
23
24

25
26

27

28
29
30
31

32

33
34
35
36

PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

if (ialpha == 0) {

/*

* Foreground i mage is transparent here.

*

f the background image is already in the frane

* buffer, there is nothing to do.

*/

} else i
/*

f (ialpha == fg_maxsanple) {

* Copy foreground pixel to frane buffer

*/
for

}

} else {
/*

(i =0; i <3; i++) {

ganfg = (float) foreground[i] / fg_naxsanpl e;

linfg = pow(ganfg, 1.0/fg_gamm);

conppi x linfg;

gcvi deo pow(conppi X, vi ewi ng_ganmma/ di spl ay_ganmma) ;
fbpix[i] = (int) (gcvideo * fb_naxsanple + 0.5);

* Conpositing i s necessary.

* Get floating-point alpha and its conpl enment.
* Note: alpha is always |inear; gamm does not
* affect it.

*/

al pha = (float) ialpha / fg_maxsanple;
conpal pha = 1.0 - al pha;

for

(i =0; i <3; i++) {
/*
* Convert foreground and background to floating

* point, then linearize (undo ganma encodi ng).
*/

ganfg = (float) foreground[i] / fg_naxsanpl e;
linfg = pow(ganfg, 1.0/fg_gamm);

ganbg = (float) background[i] / bg_naxsanpl e;
i nbg = pow(ganbg, 1.0/bg _gamm);
/*

* Conposite.

*/

conppi x = linfg * alpha + linbg * conpal pha;
/*

* Ganma correct for display.

* Convert to integer frane buffer pixel

*/

gcvi deo = pow(conppi x, vi ewi ng_ganma/ di spl ay_gamma) ;
fbpix[i] = (int) (gcvideo * fb_maxsanple + 0.5);

10. RECOMMENDATIONS FOR DECODERS 49

Variations:

1. If output is to another PNG image file instead of a frame buffer, lines 21, 22, 33, and 34 should be
changed to be something like

/*
* Ganma encode for storage in output file.
* Convert to integer sanple val ue.

*
ganout = pow(conppi x, outfile _gamm);
outpi x[i] = (int) (ganmout * out_naxsanple + 0.5);

Also, it becomes necessary to process background pixels when alphais zero, rather than just skipping
pixels. Thus, line 15 will need to be replaced by copies of lines 17-23, but processing background
instead of foreground pixel values.

2. If the sample depths of the output file, foreground file, and background file are all the same, and the
three gamma values a so match, then the no-compositing code in lines 14-23 reduces to nothing more
than copying pixel values from the input file to the output file if alphais one, or copying pixe values
from background to output file if aphais zero. Since alphaistypicaly either zero or one for the vast
majority of pixelsin animage, thisis a great savings. No gamma computations are needed for most
pixels.

3. When the sample depths and gamma values al match, it may appear attractive to skip the gamma de-
coding and encoding (lines 28-31, 33-34) and just perform line 32 using gamma-encoded sample val-
ues. Although this doesn’'t hurt image quality too badly, the time savings are small if alpha values of
zero and one are special-cased as recommended here.

4. If the original pixel values of the background image are no longer available, only processed frame
buffer pixels left by display of the background image, then lines 30 and 31 need to extract intensity
from the frame buffer pixel values using code like

/-k
* Decode frame buffer value back into |inear space.
*/

gcvideo = (float) fbpix[i] / fb_maxsanpl e;

I inbg = pow(gcvi deo, display gamra / view ng_gamms) ;

However, some roundoff error can result, so it isbetter to have the original background pixelsavailable
if at all possible.

5. Notethat lines 18-22 are performing exactly the same gamma computation that is done when no apha
channel ispresent. So, if you handle the no-al pha case with alookup table, you can use the samelookup
table here. Lines 28-31 and 33-34 can also be done with (different) lookup tables.

6. Of course, everything here can be done in integer arithmetic. Just be careful to maintain sufficient
precision al the way through.

50 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

Note: in floating point, no overflow or underflow checks are needed, because the input sample values are
guaranteed to be between 0 and 1, and compositing always yields aresult that isin between the input values
(inclusive). With integer arithmetic, some roundoff-error analysis might be needed to guarantee no overflow
or underflow.

When displaying a PNG image with full alpha channel, it is important to be able to composite the image
against some background, even if it's only black. Ignoring the apha channel will cause PNG images that
have been converted from an associated-al pha representation to look wrong. (Of course, if the apha channel
isaseparate transparency mask, then ignoring aphaisauseful option: it allowsthe hidden parts of theimage
to be recovered.)

Evenif the decoder author does not wish to implement true compositing logic, it issimpleto deal withimages
that contain only zero and one alphavalues. (Thisisimplicitly true for grayscale and truecolor PNG filesthat
use at RNS chunk; for indexed-color PNG files, it is easy to check whether t RNS contains any values other
than 0 and 255.) In this simple case, transparent pixels are replaced by the background color, while others
are unchanged. If adecoder contains only this much transparency capability, it should deal with afull alpha
channel by treating all nonzero aphavaluesasfully opague; that is, do not replace partially transparent pixels
by the background. This approach will not yield very good results for images converted from associated-
alphaformats, but it's better than doing nothing.

10.9 Progressive display

When receiving images over slow transmission links, decoders can improve perceived performance by dis-
playing interlaced images progressively. This means that as each pass is received, an approximation to the
completeimageisdisplayed based on the datareceived so far. One simple yet pleasing effect can be obtained
by expanding each received pixd to fill arectangle covering the yet-to-be-transmitted pixel positions below
and to the right of the received pixel. This process can be described by the following pseudocode:

Starting Row [1..7] = { 0, O, 4, 0, 2, 0, 1}
Starting Col [1..7] = { O, 4, O, 2, O, 1, 0}
Row Increrment [1..7] ={ 8, 8, 8, 4, 4, 2, 2}
Col Increnent [1..7] ={ 8, 8, 4, 4, 2, 2, 1}
Bl ock Height [1..7] = { 8, 8, 4, 4, 2, 2, 1}
Block Wdth [1..7] = { 8, 4, 4, 2, 2, 1, 1}
pass := 1

while pass <=7

begi n

row := Starting_Row pass]

whil e row < hei ght
begin
col := Starting_Col [pass]

10. RECOMMENDATIONS FOR DECODERS 51

while col < wdth
begi n
visit (row, col,
m n (Bl ock_Hei ght[pass], height - row,
mn (Bl ock_ Wdth[pass], width - col))

col := col + Col _Increnent[pass]
end
row : = row + Row | ncrenment[pass]
end
pass := pass + 1

end

Here, the function “visit(row,column,height,width)” obtains the next transmitted pixel and paints arectangle
of the specified height and width, whose upper-left corner is at the specified row and column, using the color
indicated by the pixel. Note that row and column are measured from 0,0 at the upper left corner.

If the decoder is merging the received image with a background image, it may be more convenient just to
paint the received pixel positions; that is, the “visit()” function sets only the pixel at the specified row and
column, not the whole rectangle. This produces a “fade-in” effect as the new image gradualy replaces the
old. An advantage of this approach isthat proper alpha or transparency processing can be done as each pixel
is replaced. Painting a rectangle as described above will overwrite background-image pixels that may be
needed later, if the pixels eventually received for those positions turn out to bewholly or partially transparent.
Of course, thisisonly aproblem if the background image is not stored anywhere offscreen.

10.10 Suggested-palette and histogram usage

In truecolor PNG files, the encoder may have provided a suggested PLTE chunk for use by viewers running
on indexed-color hardware.

If the image has at RNS chunk, the viewer will need to adapt the suggested paette for use with its desired
background color. To do this, replace the palette entry closest to thet RNS color with the desired background
color; or just add a palette entry for the background color, if the viewer can handle more colors than there
are PLTE entries.

For images of color type 6 (truecolor with alpha channel), any suggested palette should have been designed
for display of the image against auniform background of the color specified by bKGD. Viewers should prob-
ably ignore the paletteif they intend to use adifferent background, or if the bKGD chunk ismissing. Viewers
can use asuggested palette for display against adifferent background than it was intended for, but the results
may not be very good.

If the viewer presents atransparent truecolor image against a background that is more complex than asingle
color, itisunlikely that the suggested palette will be optimal for the composite image. Inthiscaseitisbest to
perform atruecolor compositing step onthetruecolor PNG image and background image, then color-quantize
the resulting image.

52 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

The histogram chunk is useful when the viewer cannot provide as many colors as are used in the image's
paette. If the viewer isonly short afew colors, it is usually adequate to drop the least-used colors from the
palette. To reduce the number of colors substantialy, it's best to choose entirely new representative colors,
rather than trying to use a subset of the existing palette. Thisamountsto performing anew color quantization
step; however, the existing palette and histogram can be used as the input data, thus avoiding a scan of the
image data.

If no palette or histogram chunk is provided, a decoder can develop its own, at the cost of an extra pass over
the image data. Alternatively, a default palette (probably a color cube) can be used.

See al'so Recommendations for Encoders. Suggested palettes (Section 9.5).

10.11 Text chunk processing

If practical, decoders should have away to display to the user al t EXt and zTXt chunks found in the file.
Even if the decoder does not recognize a particular text keyword, the user might be able to understand it.

PNG text is not supposed to contain any characters outside the ISO 8859-1 “Latin-1" character set (that is,
no codes 0-31 or 127-159), except for the newline character (decimal 10). But decoders might encounter
such characters anyway. Some of these characters can be safely displayed (e.g., TAB, FF, and CR, decimal
9, 12, and 13, respectively), but others, especialy the ESC character (decima 27), could pose a security
hazard because unexpected actions may be taken by display hardware or software. To prevent such hazards,
decoders should not attempt to directly display any non-Latin-1 characters (except for newline and perhaps
TAB, FF, CR) encountered in at EXt or zTXt chunk. Instead, ignore them or display them in avisible
notation such as “\ nnn”. See Security considerations (Section 8.5).

Even though encoders are supposed to represent newlines asLF, it is recommended that decoders not rely on
this; it's best to recognize all the common newline combinations (CR, LF, and CR-LF) and display each asa
single newline. TAB can be expanded to the proper number of spaces needed to arrive at a column multiple
of 8.

Decoders running on systems with non-L atin-1 character set encoding should provide character code remap-
ping so that Latin-1 characters are displayed correctly. Some systems may not provide all the characters
defined in Latin-1. Mapping unavailable characters to a visible notation such as “\ nnn” is agood fallback.
In particular, character codes 127-255 should be displayed only if they are printable characters on the decod-
ing system. Some systems may interpret such codes as control characters; for security, decoders running on
such systems should not display such characters literally.

Decoders should be prepared to display text chunks that contain any number of printing characters between
newline characters, even though encoders are encouraged to avoid creating lines in excess of 79 characters.

11 Glossary

ab

11. GLOSSARY 53

Exponentiation; a raised to the power b. C programmers should be careful not to misread this notation
as exclusive-or. Note that in gammarrelated calculations, zero raised to any power is valid and must
give azero result.

Alpha

A value representing a pixel’s degree of transparency. The more transparent a pixel, the less it hides
the background against which the image is presented. In PNG, alphaisrealy the degree of opacity:
zero alpha represents a completely transparent pixel, maximum a pha represents acompletely opague
pixel. But most people refer to apha as providing transparency information, not opacity information,
and we continue that custom here.

Ancillary chunk

A chunk that provides additional information. A decoder can still produce ameaningful image, though
not necessarily the best possible image, without processing the chunk.

Bit depth

Thenumber of bits per palette index (in indexed-color PNGs) or per sample (in other color types). This
isthe same value that appearsin | HDR.

Byte
Eight bits; also called an octet.
Channel

Theset of al samples of the same kind within animage; for example, all the blue samplesin atruecolor
image. (Theterm “component” isalso used, but not in this specification.) A sampleisthe intersection
of achannel and a pixel.

Chromaticity

A pair of values x,y that precisely specify the hue, though not the absolute brightness, of a perceived
color.

Chunk

A section of aPNG file. Each chunk hasatype indicated by its chunk type name. Most types of chunks
aso include some data. The format and meaning of the data within the chunk are determined by the
type name.

Composite

As averb, to form an image by merging a foreground image and a background image, using trans-
parency information to determine where the background should be visible. The foreground image is
said to be “composited against” the background.

CRC

Cyclic Redundancy Check. A CRC is atype of check value designed to catch most transmission er-
rors. A decoder calculates the CRC for the received data and compares it to the CRC that the encoder
calculated, which is appended to the data. A mismatch indicates that the data was corrupted in transit.

54 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

Critical chunk

A chunk that must be understood and processed by the decoder in order to produce ameaningful image
from a PNG file.

CRT
Cathode Ray Tube: acommon type of computer display hardware.

Datastream

A sequence of bytes. This term is used rather than “file’ to describe a byte sequence that is only a
portion of afile. We also useit to emphasize that a PNG image might be generated and consumed “on
the fly”, never appearing in astored file at all.

Deflate

The name of the compression algorithm used in standard PNG files, aswell asin zip, gzip, pkzip, and
other compression programs. Deflate is a member of the LZ77 family of compression methods.

Filter

A transformation applied to image datain hopes of improving its compressibility. PNG usesonly loss-
less (reversible) filter algorithms.

Frame buffer

Thefinal digital storage areafor the image shown by acomputer display. Software causes animageto
appear onscreen by loading it into the frame buffer.

Gamma

The brightness of mid-level tonesin animage. More precisely, aparameter that describes the shape of
the transfer function for one or more stages in an imaging pipeline. The transfer function is given by
the expression

output = input ~ gamma
where both input and output are scaled to therange O to 1.

Grayscale

Animage representation inwhich each pixel isrepresented by asingle sample value representing over-
al luminance (on ascale from black to white). PNG a so permits an apha sample to be stored for each
pixel of agrayscale image.

Indexed color

An image representation in which each pixel is represented by a single sample that is an index into a
palette or lookup table. The selected palette entry defines the actual color of the pixel.

L ossless compression

Any method of data compression that guarantees the original data can be reconstructed exactly, bit-
for-bit.

11. GLOSSARY 55

L ossy compression

Any method of data compression that reconstructs the original data approximately, rather than exactly.
LSB

Least Significant Byte of a multi-byte value.
Luminance

Perceived brightness, or grayscale level, of acolor. Luminance and chromaticity together fully define
aperceived color.

LUT

Look Up Table. Ingeneral, atable used to transform data. Inframe buffer hardware, aLUT can be used
to map indexed-color pixelsinto aselected set of truecolor values, or to perform gammacorrection. In
software, a LUT can be used as afast way of implementing any one-variable mathematical function.

MSB
Most Significant Byte of a multi-byte value.

Palette

The set of colors available in an indexed-color image. In PNG, a palette is an array of colors defined
by red, green, and blue samples. (Alpha values can aso be defined for palette entries, viathe t RNS
chunk.)

Pixel

Theinformation stored for asingle grid point in the image. The complete image isarectangular array
of pixels.

PNG editor

A program that modifies a PNG file and preserves ancillary information, including chunks that it does
not recognize. Such a program must obey the rules given in Chunk Ordering Rules (Chapter 7).

Sample

A single number in theimage data; for example, thered value of apixel. A pixe iscomposed of one or
more samples. When discussing physical datalayout (in particular, in Image layout, Section 2.3), we
use“sample’ to mean anumber stored intheimage array. It would be more precise but much less read-
able to say “sample or palette index” in that context. Elsewhere in the specification, “sample” means
acolor vaue or alphavaue. In the indexed-color case, these are pal ette entries not palette indexes.

Sample depth

The precision, in hits, of color values and alpha values. In indexed-color PNGs the sample depth is
aways 8 by definition of the PLTE chunk. In other color types it is the same as the bit depth.

Scanline

One horizontal row of pixels within an image.

56 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

Truecolor

Animage representation in which pixel colors are defined by storing three samples for each pixel, rep-
resenting red, green, and blue intensities respectively. PNG also permits an apha sample to be stored
for each pixel of atruecolor image.

White point
The chromaticity of acomputer display’s nomina white value.
zlib
A particular format for data that has been compressed using deflate-style compression. Also the name

of alibrary implementing this method. PNG implementations need not use the zlib library, but they
must conform to its format for compressed data.

12 Appendix: Rationale

(This appendix is not part of the forma PNG specification.)

Thisappendix givesthe reasoning behind some of the design decisionsin PNG. Many of these decisonswere
the subject of considerable debate. The authors freely admit that another group might have made different
decisions; however, we believe that our choices are defensible and consistent.

121 Why anew fileformat?

Does the world really need yet another graphics format? We believe so. GIF is no longer freely usable, but
no other commonly used format can directly replace it, asis discussed in more detail below. We might have
used an adaptation of an existing format, for example GIF with an unpatented compression scheme. But this
would require new code anyway; it would not be al that much easier to implement than a whole new file
format. (PNG is designed to be simple to implement, with the exception of the compression engine, which
would be needed in any case.) We feel that thisis an excellent opportunity to design a new format that fixes
some of the known limitations of GIF.

12.2 Why these features?

Thefeatures chosen for PNG areintended to address the needs of applications that previously used the special
strengths of GIF. In particular, GIF is well adapted for online communications because of its streamability
and progressive display capability. PNG shares those attributes.

We have a so addressed some of the widely known shortcomings of GIF. In particular, PNG supports true-
color images. We know of no widely used image format that losslessly compresses truecolor images as ef-
fectively as PNG does. We hope that PNG will make use of truecolor images more practical and widespread.

12. APPENDIX: RATIONALE 57

Someform of transparency control isdesirable for applications in which images are displayed against a back-
ground or together with other images. GIF provided asimple transparent-col or specification for this purpose.
PNG supportsafull alphachannel aswell astransparent-color specifications. Thisallowsboth highly flexible
transparency and compression efficiency.

Robustness against transmission errors has been animportant consideration. For example, imagestransferred
across Internet are often mistakenly processed astext, leading to file corruption. PNGisdesigned so that such
errors can be detected quickly and reliably.

PNG has been expressly designed not to be completely dependent on a single compression technique. Al-
though deflate/inflate compression is mentioned in this document, PNG would still exist without it.

12.3 Why not these features?

Some features have been deliberately omitted from PNG. These choices were made to simplify implemen-
tation of PNG, promote portability and interchangeability, and make the format as simple and foolproof as
possible for users. In particular:

e Thereisno uncompressed variant of PNG. It is possible to store uncompressed data by using only un-
compressed deflate blocks (afeature normally used to guarantee that deflate does not makeincompress-
ibledatamuch larger). However, PNG software must support full defl ate/inflate; any software that does
not isnot compliant with the PNG standard. The two most important features of PNG—portability and
compression—are absolute requirements for online applications, and users demand them. Failure to
support full deflate/inflate compromises both of these objectives.

e Thereisnolossy compression in PNG. Existing formats such as JFIF already handle lossy compres-
sion well. Furthermore, available lossy compression methods (e.g., JPEG) are far from fool proof — a
poor choice of quality level can ruin animage. To avoid user confusion and unintentional loss of infor-
mation, we fed it is best to keep lossy and lossless formats strictly separate. Also, lossy compression
is complex to implement. Adding JPEG support to a PNG decoder might increase its size by an order
of magnitude. Thiswould certainly cause some decoders to omit support for the feature, which would
destroy our goal of interchangeability.

e Thereisno support for CMYK or other unusual color spaces. Again, thisisin the name of promoting
portability. CMYK, in particular, is far too device-dependent to be useful as a portable image repre-
sentation.

e Thereisno standard chunk for thumbnail views of images. In discussions with software vendors who
use thumbnails in their products, it has become clear that most would not use a “standard” thumbnail
chunk. For one thing, every vendor has a different idea of what the dimensions and characteristics of
athumbnail ought to be. Also, some vendors keep thumbnails in separate files to accommodate varied
image formats; they are not going to stop doing that simply because of a thumbnail chunk in one new
format. Proprietary chunks containing vendor-specific thumbnails appear to be more practical than a
common thumbnail format.

58 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

It is worth noting that private extensions to PNG could easily add these features. We will not, however, in-
clude them as part of the basic PNG standard.

PNG also does not support multiple imagesin onefile. Thisrestriction isareflection of the reality that many
applications do not need and will not support multiple images per file. In any case, singleimages areafunda-
mentally different sort of object from sequences of images. Rather than make fal se promises of interchange-
ability, we have drawn a clear distinction between single-image and multi-image formats. PNG isa single-
image format. (But see Multiple-image extension, Section 8.4.)

12.4 Why not useformat X?

Numerous existing formats were considered before deciding to develop PNG. None could meet the require-
ments we felt were important for PNG.

GIF is no longer suitable as a universal standard because of legal entanglements. Although just replacing
GIF scompression method would avoid that problem, GIF does not support truecolor images, a phachannels,
or gamma correction. The spec has more subtle problems too. Only a small subset of the GIF89 spec is
actualy portable across a variety of implementations, but there is no codification of the most portable part
of the spec.

TIFFisfar too complex to meet our goals of simplicity and interchangeability. Defining aTIFF subset would
meet that objection, but would frustrate users making the reasonabl e assumption that afile saved as TIFF from
their existing software would load into a program supporting our flavor of TIFF. Furthermore, TIFF is not
designed for stream processing, has no provision for progressive display, and does not currently provide any
good, legally unencumbered, lossess compression method.

IFF has also been suggested, but is not suitable in detail: available image representations are too machine-
specific or not adequately compressed. The overall chunk structure of IFF is a useful concept that PNG has
liberally borrowed from, but we did not attempt to be bit-for-bit compatible with IFF chunk structure. Again
thisis due to detailed issues, notably the fact that |IFF FORMs are not designed to be serialy writable.

Lossless JPEG is hot suitable because it does not provide for the storage of indexed-color images. Further-
more, its lossless truecolor compression is often inferior to that of PNG.

125 Byteorder

It has been asked why PNG uses network byte order. We have selected one byte ordering and used it consis-
tently. Which order in particular is of little relevance, but network byte order has the advantage that routines
to convert to and from it are already available on any platform that supports TCP/IP networking, including
al PC platforms. The functions are trivial and will be included in the reference implementation.

12. APPENDIX: RATIONALE 59

12.6 Interlacing

PNG’stwo-dimensiona interlacing scheme is more complex to implement than GIF’s line-wise interlacing.
It also costs alittle morein file size. However, it yields aninitial image eight times faster than GIF (the first
pass transmits only 1/64th of the pixels, compared to 1/8th for GIF). Although thisinitial image is coarse,
it isuseful in many situations. For example, if the image is a World Wide Web imagemap that the user has
seen before, PNG'sfirst passis often enough to determine whereto click. The PNG scheme also looks better
than GIF's, because horizontal and vertical resolution never differ by more than a factor of two; this avoids
the odd “ stretched” 100k seen when interlaced GlFs arefilled in by replicating scanlines. Preliminary results
show that small text in aninterlaced PNG image istypically readable about twice asfast asin an equivaent
GIF, i.e., after PNG'sfifth pass or 25% of the image data, instead of after GIF s third pass or 50%. Thisis
again due to PNG’s more balanced increase in resolution.

12.7 Why gamma?

It might seem natural to standardize on storing sample values that are linearly proportional to light intensity
(that is, have gammaof 1.0). But infact, it is common for images to have agamma of lessthan 1. There are
three good reasons for this:

e For reasons detailed in Gamma Tutorial (Chapter 13), al video cameras apply a " gamma correction”
function totheintensity information. Thiscausesthevideo signal to haveagammaof about 0.5 relative
tothelight intensity intheoriginal scene. Thus, images obtained by frame-grabbing video already have
agamma of about 0.5.

¢ The human eye has anonlinear response to intensity, so linear encoding of samples either wastes sam-
ple codes in bright areas of the image, or provides too few sample codes to avoid banding artifacts in
dark areas of the image, or both. At least 12 hits per sample are needed to avoid visible artifacts in
linear encoding with a100:1 image intensity range. Animage gammain the range 0.3 to 0.5 allocates
samplevauesin away that roughly corresponds to the eye's response, so that 8 bits/sample are enough
to avoid artifacts caused by insufficient sample precision in amost al images. This makes “gamma
encoding” amuch better way of storing digital images than the simpler linear encoding.

e Many images are created on PCs or workstations with no gamma correction hardware and no soft-
ware willing to provide gamma correction either. In these cases, the images have had their lighting
and color chosen to look best on this platform — they can be thought of as having “manua” gamma
correction built in. To see what the image author intended, it is necessary to treat such images as hav-
ing afile_gammavalue in the range 0.4-0.6, depending on the room lighting level that the author was
working in.

In practice, image gamma vaues around 1.0 and around 0.5 are both widdly found. Older image standards
such as GIF often do not account for thisfact. The JFIF standard specifies that images in that format should
use linear samples, but many JFIF images found on the Internet actually have a gamma somewhere near
0.4 or 0.5. The variety of images found and the variety of systems that people display them on have led to
widespread problems with images appearing “too dark” or “too light”.

60 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

PNG expects viewers to compensate for image gamma at the time that the image is displayed. Another pos-
sible approach is to expect encoders to convert al images to a uniform gamma at encoding time. While that
method would speed viewers dlightly, it has fundamental flaws:

e Gammacorrection isinherently lossy due to quantization and roundoff error. Requiring conversion at
encoding time thus causesirreversible loss. Since PNG isintended to be alossless storage format, this
is undesirable; we should store unmodified source data.

e Theencoder might not know the source gammavaue. If thedecoder does gammacorrection at viewing
time, it can adjust the gamma (change the displayed brightness) in response to feedback from ahuman
user. The encoder has no such recourse.

o Whatever “standard” gamma we settled on would be wrong for some displays. Hence viewers would
still need gamma correction capability.

Since there will always be images with no gamma or an incorrect recorded gamma, good viewers will need
to incorporate gamma adjustment code anyway. Gamma correction at viewing time is thus the right way to

go.
See Gamma Tutoria (Chapter 13) for more information.

12.8 Non-premultiplied alpha

PNG uses “unassociated” or “non-premultiplied” alpha so that images with separate transparency masks can
be stored losslessly. Another common technique, “premultiplied apha’, stores pixel values premultiplied by
the alpha fraction; in effect, the image is already composited against a black background. Any image data
hidden by the transparency mask isirretrievably lost by that method, since multiplying by azero aphavaue
always produces zero.

Some image rendering techniques generate images with premultiplied alpha (the apha vaue actually rep-
resents how much of the pixel is covered by the image). This representation can be converted to PNG by
dividing the sample values by apha, except where alphais zero. The result will ook good if displayed by a
viewer that handles alpha properly, but will not look very good if the viewer ignores the alpha channel.

Although each form of alpha storage hasits advantages, we did not want to require all PNG viewersto handle
both forms. We standardized on non-premultiplied alpha as being the lossess and more general case.

12.9 Filtering

PNG includes filtering capability because filtering can significantly reduce the compressed size of truecolor
and grayscale images. Filtering is also sometimes of value on indexed-color images, although this is less
common.

The filter algorithms are defined to operate on bytes, rather than pixels; this gains simplicity and speed with
very little cost in compression performance. Tests have shown that filtering is usually ineffective for images
with fewer than 8 bits per sample, so providing pixelwise filtering for such images would be pointless. For

12. APPENDIX: RATIONALE 61

16 bit/sample data, bytewisefiltering is nearly aseffective as pixelwisefiltering, because M SBsare predicted
from adjacent MSBs, and L SBs are predicted from adjacent L SBs.

The encoder is alowed to change filters for each new scanline. This creates no additional complexity for
decoders, since a decoder is required to contain defiltering logic for every filter type anyway. The only cost
is an extra byte per scanline in the pre-compression datastream. Our tests showed that when the same filter
is selected for all scanlines, this extra byte compresses away to amost nothing, so thereislittle storage cost
compared to afixed filter specified for thewholeimage. Andthe potential benefits of adaptivefiltering aretoo
great to ignore. Even with the simplistic filter-choice heuristics so far discovered, adaptive filtering usually
outperforms fixed filters. In particular, an adaptive filter can change behavior for successive passes of an
interlaced image; afixed filter cannot.

1210 Text strings

Most graphics file formats include the ability to store some textual information along with the image. But
many applications need more than that: they want to be able to store severa identifiable pieces of text. For
example, a database using PNG files to store medical X-rays would likely want to include patient’s name,
doctor’s name, etc. A simpleway to do thisin PNG would be to invent new private chunks holding text. The
disadvantage of such an approach is that other applications would have no idea what was in those chunks,
and would simply ignore them. Instead, we recommend that textual information be stored in standard t EXt
chunks with suitable keywords. Use of t EXt tells any PNG viewer that the chunk contains text that might
be of interest to ahuman user. Thus, a person looking at the file with another viewer will till be able to see
the text, and even understand what it is if the keywords are reasonably self-explanatory. (To this end, we
recommend spelled-out keywords, not abbreviations that will be hard for a person to understand. Saving a
few bytes on a keyword is false economy.)

The SO 8859-1 (Latin-1) character set was chosen as a compromise between functionality and portability.
Some platforms cannot display anything morethan 7-bit ASCII characters, while others can handle characters
beyond the Latin-1 set. Wefelt that Latin-1 represents awidely useful and reasonably portable character set.
Latin-1 isadirect subset of character sets commonly used on popular platforms such as Microsoft Windows
and X Windows. It can aso be handled on Macintosh systems with a simple remapping of characters.

There is presently no provision for text employing character sets other than Latin-1. We recognize that the
need for other character sets will increase. However, PNG aready requires that programmers implement a
number of new and unfamiliar features, and text representation is not PNG's primary purpose. Since PNG
provides for the creation and public registration of new ancillary chunks of general interest, we expect that
text chunks for other character sets, such as Unicode, eventually will be registered and increase gradualy in
popularity.

12.11 PNG filesignature

Thefirst eight bytes of a PNG file aways contain the following values:

62 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

(deci mal) 137 80 78 71 13 10 26 10
(hexadeci mal) 89 50 4e 47 0d Oa 1l1la Oa
(ASCI I C notation) \ 211 P N G \r \n\032\n

This signature both identifies the file as a PNG file and provides for immediate detection of common file-
transfer problems. The first two bytes distinguish PNG files on systems that expect the first two bytes to
identify the file type uniquely. The first byte is chosen as anon-ASCII value to reduce the probability that
atext file may be misrecognized as a PNG file; also, it catches bad file transfers that clear bit 7. Bytes two
through four name the format. The CR-LF sequence catches bad file transfers that alter newline sequences.
The control-Z character stops file display under MS-DOS. The findl line feed checks for the inverse of the
CR-LF trandation problem.

A decoder may further verify that the next eight bytes contain an | HDR chunk header with the correct chunk
length; thiswill catch bad transfers that drop or alter null (zero) bytes.

Note that there isno version number in the signature, nor indeed anywherein thefile. Thisisintentional: the
chunk mechanism provides a better, more flexible way to handle format extensions, as explained in Chunk
naming conventions (Section 12.13).

12.12 Chunk layout

The chunk design allows decoders to skip unrecognized or uninteresting chunks: it is simply necessary to
skip the appropriate number of bytes, as determined from the length field.

Limiting chunk length to (2°31)-1 bytes avoids possible problems for implementations that cannot conve-
niently handle 4-byte unsigned values. In practice, chunks will usually be much shorter than that anyway.

A separate CRC isprovided for each chunk in order to detect badly-transferred images as quickly aspossible.
In particular, critical data such as the image dimensions can be validated before being used.

The chunk length is excluded from the CRC so that the CRC can be calculated as the data is generated; this
avoids a second pass over the data in cases where the chunk length is not known in advance. Excluding the
length from the CRC does not create any extrarisk of failing to discover file corruption, since if the length
iswrong, the CRC check will fail: the CRC will be computed on the wrong set of bytes and then be tested
against the wrong value from the file.

12.13 Chunk naming conventions

The chunk naming conventions alow safe, flexible extension of the PNG format. This mechanism is much
better than aformat version number, because it works on afeature-by-feature basis rather than being an over-
al indicator. Decoders can process newer filesif and only if the files use no unknown critical features (as
indicated by finding unknown critical chunks). Unknown ancillary chunks can be safely ignored. We de-
cided against having an overall format version number because experience has shown that format version
numbers hurt portability as much as they help. Version numbers tend to be set unnecessarily high, leading
to older decoders rejecting files that they could have processed (this was a serious problem for several years

12. APPENDIX: RATIONALE 63

after the GIF89 spec came out, for example). Furthermore, private extensions can be made either critical or
ancillary, and standard decoders should react appropriately; overall version numbers are no help for private
extensions.

A hypothetical chunk for vector graphicswould beacritical chunk, sinceif ignored, important parts of thein-
tended image would be missing. A chunk carrying the Mandelbrot set coordinates for afractal image would
be ancillary, since other applications could display the image without understanding what the image repre-
sents. In general, a chunk type should be made critical only if it isimpossible to display areasonable repre-
sentation of the intended image without interpreting that chunk.

The public/private property bit ensures that any newly defined public chunk type name cannot conflict with
proprietary chunks that could be in use somewhere. However, this does not protect users of private chunk
names from the possibility that someone else may use the same chunk name for a different purpose. Itisa
good ideato put additional identifying information at the start of the data for any private chunk type.

When a PNG file is modified, certain ancillary chunks may need to be changed to reflect changes in other
chunks. For example, a histogram chunk needs to be changed if the image data changes. If the file editor
does not recognize histogram chunks, copying them blindly to a new output file is incorrect; such chunks
should be dropped. The safe/unsafe property bit allows ancillary chunks to be marked appropriately.

Not all possible modification scenarios are covered by the safe/lunsafe semantics. In particular, chunks that
are dependent on the total file contents are not supported. (An example of such achunk isanindex of | DAT
chunk locations within the file: adding a comment chunk would inadvertently break the index.) Definition
of such chunksisdiscouraged. If absolutely necessary for a particular application, such chunks can be made
critical chunks, with consequent loss of portability to other applications. In general, ancillary chunks can de-
pend on critical chunks but not on other ancillary chunks. It is expected that mutually dependent information
should be put into asingle chunk.

In some situations it may be unavoidable to make one ancillary chunk dependent on another. Although the
chunk property bits are insufficient to represent this case, a simple solution is available: in the dependent
chunk, record the CRC of the chunk depended on. It can then be determined whether that chunk has been
changed by some other program.

The same technique can be useful for other purposes. For example, if aprogram relies on the palette being in
aparticular order, it can store a private chunk containing the CRC of the PLTE chunk. If this value matches
when thefileis again read in, then it provides high confidence that the palette has not been tampered with.
Notethat it is not necessary to mark the private chunk unsafe-to-copy when thistechnique is used; thus, such
aprivate chunk can survive other editing of thefile.

12.14 Palette histograms

A viewer may not be able to provide as many colors as are listed in the image's palette. (For example, some
colors could be reserved by awindow system.) To produce the best results in this situation, it is helpful to
have information about the frequency with which each palette index actually appears, in order to choose the
best palette for dithering or to drop the least-used colors. Since images are often created once and viewed

64 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

many times, it makes sense to calculate this information in the encoder, although it is not mandatory for the
encoder to provideit.

Other image formats have usually addressed this problem by specifying that the pal ette entries should appear
in order of frequency of use. That isan inferior solution, because it doesn’t give the viewer nearly as much
information: the viewer can’'t determine how much damage will be done by dropping the last few colors.
Nor does a sorted palette give enough information to choose a target palette for dithering, in the case that
the viewer needs to reduce the number of colors substantially. A palette histogram provides the information
needed to choose such atarget palette without making a pass over the image data.

13 Appendix: Gamma Tutorial

(This appendix is not part of the forma PNG specification.)

It would be convenient for graphics programmersif al of the components of an imaging system were linear.
The voltage coming from an electronic camera would be directly proportiona to the intensity (power) of
light in the scene, the light emitted by a CRT would be directly proportional to itsinput voltage, and so on.
However, rea-world devices do not behave in thisway. All CRT displays, amost all photographic film, and
many electronic cameras have nonlinear signal-to-light-intensity or intensity-to-signal characteristics.

Fortunately, all of these nonlinear devices have atransfer function that is approximated fairly well by asingle
type of mathematical function: a power function. This power function has the general equation

out put = input © gammma

where” denotes exponentiation, and “gamma’ (often printed using the Greek letter gamma, thus the name)
issimply the exponent of the power function.

By convention, “input” and “output” are both scaled to the range 0..1, with O representing black and 1 rep-
resenting maximum white (or red, etc). Normalized in this way, the power function is completely described
by asingle number, the exponent “gamma’.

So, given aparticular device, we can measure its output as a function of itsinput, fit apower function to this
measured transfer function, extract the exponent, and call it gamma. We often say “this device has agamma
of 2.5" asashorthand for “this device has a power-law response with an exponent of 2.5". We can also talk
about the gamma of amathematical transform, or of alookup table in aframe buffer, so long asthe input and
output of the thing are related by the power-law expression above.

How do gammas combine?

Real imaging systems will have several components, and more than one of these can be nonlinear. If al of
the components have transfer characteristics that are power functions, then the transfer function of the entire
system is adso a power function. The exponent (gamma) of the whole system’s transfer function isjust the
product of al of the individual exponents (gammas) of the separate stages in the system.

13. APPENDIX: GAMMA TUTORIAL 65

Also, stages that are linear pose no problem, since a power function with an exponent of 1.0 isreally alinear
function. So alinear transfer function isjust a specia case of a power function, with agamma of 1.0.

Thus, as long as our imaging system contains only stages with linear and power-law transfer functions, we
can meaningfully talk about the gamma of the entire system. Thisisindeed the case with most real imaging
systems.

What should overall gamma be?

If the overall gamma of an imaging system is 1.0, its output islinearly proportional to itsinput. This means
that the ratio between the intensities of any two areas in the reproduced image will be the same asit wasin
the original scene. It might seem that this should always be the goa of an imaging system: to accurately
reproduce the tones of the original scene. Alas, that is not the case.

When thereproduced imageisto beviewed in“bright surround” conditions, where other white objects nearby
in the room have about the same brightness as white in the image, then an overall gammaof 1.0 doesindeed
giverea-looking reproduction of anatural scene. Photographic prints viewed under room light and computer
displays in bright room light are typical “bright surround” viewing conditions.

However, sometimes images are intended to be viewed in “dark surround” conditions, where the room is
substantially black except for the image. Thisis typical of the way movies and dlides (transparencies) are
viewed by projection. Under these circumstances, an accurate reproduction of the origina scene resultsin
an image that human viewers judge as “flat” and lacking in contrast. It turns out that the projected image
needs to have a gamma of about 1.5 relative to the origina scene for viewers to judge it “natura”. Thus,
didefilm is designed to have a gamma of about 1.5, not 1.0.

Thereisaso an intermediate condition called “dim surround”, where the rest of the room is still visibleto the
viewer, but isnoticeably darker than the reproduced imageitself. Thisistypical of television viewing, at least
in the evening, as well as subdued-light computer work areas. In dim surround conditions, the reproduced
image needs to have a gamma of about 1.25 relative to the original scene in order to look natural.

Therequirement for boosted contrast (gamma) in dark surround conditionsis due to the way the human visua
system works, and applies equally well to computer monitors. Thus, a PNG viewer trying to achieve the
maximum realism for theimagesit displays really needs to know what the room lighting conditions are, and
adjust the gamma of the displayed image accordingly.

If asking the user about room lighting conditions isinappropriate or too difficult, just assume that the overall
gamma (viewing_gamma as defined below) should be 1.0 or 1.25. That’sal that most systemsthat implement
gamma correction do.

What isa CRT’sgamma?

All CRT displays have a power-law transfer characteristic with a gamma of about 2.5. This is due to the
physical processes involved in controlling the electron beam in the electron gun, and has nothing to do with
the phosphor.

66 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

An exception to thisruleisfancy “calibrated” CRTsthat have internal electronics to alter their transfer func-
tion. If you have one of these, you probably should believe what the manufacturer tells you its gammaiis.
But in al other cases, assuming 2.5 islikely to be pretty accurate.

There are various images around that purport to measure gamma, usually by comparing the intensity of
an area containing alternating white and black with a series of areas of continuous gray of different inten-
sity. These are usualy not reliable. Test images that use a “checkerboard” pattern of black and white are
the worst, because a single white pixel will be reproduced considerably darker than a large area of white.
An image that uses alternating black and white horizontal lines (such as the “gamma.png” test image at
ftp://ftp.uu. net/graphics/png/images/ suite/ gamma. png) is much better, but even it
may be inaccurate at high “picture” settings on some CRTSs.

If you have agood photometer, you can measure the actual light output of a CRT asafunction of input voltage
and fit a power function to the measurements. However, note that this procedure is very sensitive to the
CRT’s black level adjustment, somewhat sensitive to its picture adjustment, and also affected by ambient
light. Furthermore, CRTs spread some light from bright areas of an image into nearby darker areas; asingle
bright spot against a black background may be seen to have a“halo”. Your measuring technique will need
to minimize the effects of this.

Because of the difficulty of measuring gamma, using either test images or measuring equipment, you' re usu-
aly better off just assuming gammais 2.5 rather than trying to measure it.

What isgamma correction?

A CRT has agammaof 2.5, and we can’t change that. To get an overall gamma of 1.0 (or somewhere near
that) for an imaging system, we need to have at least one other component of the “image pipeling” that is
nonlinear. If, in fact, there is only one nonlinear stage in addition to the CRT, then it’s traditional to say that
the CRT hasacertain gamma, and that the other nonlinear stage provides “gamma correction” to compensate
for the CRT. However, exactly where the “correction” is done depends on circumstance.

In al broadcast video systems, gamma correction is done in the camera. This choice was made in the days
when television electronics were al analog, and a good gamma-correction circuit was expensive to build.
The original NTSC video standard required cameras to have a transfer function with a gamma of 1/2.2, or
about 0.45. Recently, a more complex two-part transfer function has been adopted [SMPTE-170M], but its
behavior can be well approximated by a power function with a gamma of 0.5. When the resulting image is
displayed on a CRT with agamma of 2.5, the image on screen ends up with agamma of about 1.25 relative
to the origina scene, which is appropriate for “dim surround” viewing.

These days, video signals are often digitized and stored in computer frame buffers. This works fine, but
remember that gamma correction is “built into” the video signal, and so the digitized video has a gamma of
about 0.5 relative to the original scene.

Computer rendering programs often produce linear samples. To display these correctly, intensity on the CRT
needs to be directly proportional to the sample values in the frame buffer. This can be done with a specia
hardware |ookup table between the frame buffer and the CRT hardware. Thelookup table (often called LUT)

13. APPENDIX: GAMMA TUTORIAL 67

is loaded with a mapping that implements a power function with a gamma of 0.4, thus providing “gamma
correction” for the CRT gamma.

Thus, gamma correction sometimes happens before the frame buffer, sometimes after. Aslong as images
created in a particular environment are always displayed in that environment, everything is fine. But when
people try to exchange images, differences in gamma correction conventions often result inimages that seem
far too bright and washed out, or far too dark and contrasty.

Gamma-encoded samples are good

S0, isit better to do gamma correction before or after the frame buffer?

In an ideal world, sample values would be stored in floating point, there would be lots of precision, and it
wouldn’t really matter much. But in reality, we're aways trying to store imagesin as few bits as we can.

If we decide to use samples that are linearly proportional to intensity, and do the gamma correction in the
frame buffer LUT, it turns out that we need to use at least 12 bits for each of red, green, and blue to have
enough precision in intensity. With any less than that, we will sometimes see “contour bands’ or “Mach
bands’ in the darker areas of the image, where two adjacent sample values are still far enough apart in inten-
sity for the difference to be visible.

However, through an interesting coincidence, the human eye's subjective perception of brightnessis related
to the physical stimulation of light intensity in a manner that is very much like the power function used for
gamma correction. If we apply gamma correction to measured (or calculated) light intensity before quantiz-
ing to an integer for storage in aframe buffer, we can get away with using many fewer bitsto store theimage.
Infact, 8 bits per color isalmost aways sufficient to avoid contouring artifacts. Thisisbecause, since gamma
correction is so closely related to human perception, we are assigning our 256 available sample codesto in-
tensity valuesin amanner that approximates how visible those intensity changes are to the eye. Compared to
alinear-sample image, we allocate fewer sample values to brighter parts of the tona range and more sample
values to the darker portions of the tonal range.

Thus, for the same apparent image quality, images using gamma-encoded sample values need only about
two-thirds as many bits of storage as images using linear samples.

General gamma handling

When morethan two nonlinear transfer functions areinvolved in theimage pipeline, theterm *“ gammacorrec-
tion” becomestoo vague. If we consider a pipeline that involves capturing (or calculating) an image, storing
itinanimagefile, reading the file, and displaying the image on some sort of display screen, there are at least
5 placesin the pipeline that could have nonlinear transfer functions. Let’s give each aspecific namefor their
characteristic gamma:

camera_gamma
the characteristic of the image sensor

68 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

encoding_gamma
the gamma of any transformation performed by the software writing the image file

decoding_gamma
the gamma of any transformation performed by the software reading the image file

LUT _gamma
the gamma of the frame buffer LUT, if present

CRT_gamma
the gamma of the CRT, generaly 2.5

In addition, let's add afew other names;

file_gamma
the gamma of theimage in the file, relative to the original scene. Thisis

file ganma = canera_gamma * encodi ng_gamrma

display_gamma
the gamma of the “display system” downstream of the frame buffer. Thisis

di spl ay_gamm = LUT_ganma * CRT_ganmma

viewing_gamma
the overall gammathat we want to obtain to produce pleasing images — generally 1.0to 1.5.

The file_gamma value, as defined above, is what goes in the gAMA chunk in a PNG file. If file_gammais
not 1.0, we know that gamma correction has been done on the sample values in the file, and we could call
them “gamma corrected” samples. However, since there can be so many different values of gamma in the
image display chain, and some of them are not known at the time the image is written, the samples are not
really being “ corrected” for a specific display condition. We arereally using a power function in the process
of encoding an intensity range into a small integer field, and so it is more correct to say “gamma encoded”
samples instead of “gamma corrected” samples.

When displaying an image file, the image decoding program is responsible for making the overall gamma
of the system equal to the desired viewing_gamma, by selecting the decoding_gamma appropriately. When
displaying a PNG file, the gAMA chunk provides the file_ gammavaue. The display_gamma may be known
for this machine, or it might be abtained from the system software, or the user might have to be asked what
itis. The correct viewing_gamma depends on lighting conditions, and that will generally have to come from
the user.

Ultimately, you should have

file ganma * decodi ng_gamma * di splay_ganma = vi ewi hg_ganmma

13. APPENDIX: GAMMA TUTORIAL 69

Some specific examples

In digital video systems, camera_gamma is about 0.5 by declaration of the various video standards docu-
ments. CRT_gamma is 2.5 as usual, while encoding_gamma, decoding_gamma, and LUT_gamma are all
1.0. Asaresult, viewing_gamma ends up being about 1.25.

On frame buffers that have hardware gamma correction tables, and that are calibrated to display linear sam-
ples correctly, display gammais 1.0.

Many workstations and X terminas and PC displays lack gamma correction lookup tables. Here,
LUT _gammaisaways 1.0, so display_gammais 2.5.

On the Macintosh, thereisa LUT. By default, it is loaded with atable whose gammais about 0.72, giving
adisplay_gamma (LUT and CRT combined) of about 1.8. Some Macs have a“Gamma’ control panel that
allowsgammato be changed to 1.0, 1.2, 1.4, 1.8, or 2.2. These settings load alternate LUTsthat are designed
to give adisplay_gammarthat is equal to the label on the selected button. Thus, the “Gamma’ control panel
setting can be used directly as display_gamma in decoder calculations.

On recent SGI systems, there is a hardware gamma-correction table whose contents are controlled by the
(privileged) “gamma’ program. The gamma of the table is actually the reciproca of the number that
“gamma’ prints, and it does not include the CRT gamma. To obtain the display_gamma, you need to find
the SGI system gamma (either by looking in afile, or asking the user) and then calculating

di splay_ganmma = 2.5 / SG _system gamma

You will find SGI systems with the system gamma set to 1.0 and 2.2 (or higher), but the default when ma-
chines are shipped is 1.7.

A note about video gamma

The origina NTSC video standards specified asimple power-law cameratransfer function with agamma of
1/2.2 or 0.45. Thisisnot possible to implement exactly in analog hardware because the function hasinfinite
dope at x=0, so al cameras deviated to some degree from thisidea. More recently, a new camera transfer
function that is physically realizable has been accepted as a standard [SMPTE-170M]. It is

4.5 * Vin if Vin < 0.018
1.099 * (Vin~0.45) - 0.099 if Vin >= 0.018

Vout
Vout

where Vin and Vout are measured on ascale of 0to 1. Although the exponent remains 0.45, the multiplication
and subtraction change the shape of the transfer function, so it is no longer a pure power function. If you
want to perform extremely precise calculations on video signals, you should use the expression above (or its
inverse, as required).

However, PNG does not provide away to specify that an image uses this exact transfer function; the gAMA
chunk aways assumes a pure power-law function. If we plot the two-part transfer function above along with
the family of pure power functions, we find that a power function with a gamma of about 0.5 to 0.52 (not
0.45) most closely approximates the transfer function. Thus, when writing a PNG file with data obtained

70 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

from digitizing the output of a modern video camera, the gAMA chunk should contain 0.5 or 0.52, not 0.45.
Theremaining difference between the true transfer function and the power function isinsignificant for almost
all purposes. (Infact, the alignment errorsin most cameras arelikely to be larger than the difference between
these functions.) The designers of PNG deemed the ssmplicity and flexibility of a power-law definition of
gAMA to be more important than being able to describe the SMPTE-170M transfer curve exactly.

The PAL and SECAM video standards specify a power-law camera transfer function with agammaof 1/2.8
or 0.36 — not the /2.2 of NTSC. However, thisis too low in practice, so real cameras are likely to have
their gamma set close to NTSC practice. Just guessing 0.45 or 0.5 islikely to give you viewable results, but
if you want precise values you'll probably have to measure the particular camera.

Further reading

If you have access to the World Wide Web, read Charles Poynton’s excellent “Gamma FAQ” [GAMMA-
FAQ] for more information about gamma.

14 Appendix: Color Tutorial

(This appendix is not part of the forma PNG specification.)

About chromaticity

The c HRMchunk is used, together with the g AMA chunk, to convey precise color information so that a PNG
image can be displayed or printed with better color fidelity than is possible without this information. The
preceding chapters state how this information is encoded in a PNG image. Thistutoria briefly outlines the
underlying color theory for those who might not be familiar with it.

Note that displaying an image with incorrect gamma will produce much larger color errors than failing to
use the chromaticity data. First be sure the monitor set-up and gamma correction are right, then worry about
chromaticity.

The problem

The color of an object depends not only on the precise spectrum of light emitted or reflected from it, but
also on the observer — their species, what else they can see at the same time, even what they have recently
looked at! Furthermore, two very different spectra can produce exactly the same color sensation. Color isnot
an objective property of real-world objects; it isasubjective, biologica sensation. However, by making some
simplifying assumptions (such as. wearetalking about human vision) it ispossible to produce amathematical
model of color and thereby obtain good color accuracy.

14. APPENDIX: COLOR TUTORIAL 71

Device-dependent color

Display the same RGB data on three different monitors, side by side, and you will get a noticeably different
color balance on each display. Thisis because each monitor emits a dightly different shade and intensity
of red, green, and blue light. RGB is an example of a device-dependent color model — the color you get
depends on the device. This also means that a particular color — represented as say RGB 87, 146, 116 on
one monitor — might have to be specified as RGB 98, 123, 104 on another to produce the same color.

Device-independent color

A full physical description of a color would require specifying the exact spectral power distribution of the
light source. Fortunately, the human eye and brain are not so sensitive as to require exact reproduction of
a spectrum. Mathematical, device-independent color models exist that describe fairly well how a particular
color will be seen by humans. The most important device-independent color model, to which all others can
be related, was developed by the International Lighting Committee (CIE, in French) and is called XY Z.

InXYZ, X isthe sum of aweighted power distribution over the whole visible spectrum. SoareY and Z, each
with different weights. Thusany arbitrary spectral power distribution iscondensed downto just threefloating
point numbers. The weights were derived from color matching experiments done on human subjects in the
1920s. CIE XY Z has been an International Standard since 1931, and it has a number of useful properties:

¢ two colors with the same XY Z values will 1ook the same to humans
¢ two colors with different XY Z values will not look the same

e theY value represents all the brightness information (luminance)

e the XY Z color of any object can be objectively measured

Color models based on XY Z have been used for many years by people who need accurate control of color
— lighting engineers for film and TV, paint and dyestuffs manufacturers, and so on. They are thus proven
inindustrial use. Accurate, device-independent color started to spread from high-end, specialized areasinto
the mainstream during the late 1980s and early 1990s, and PNG takes notice of that trend.

Calibrated, device-dependent color

Traditionally, image file formats have used uncalibrated, device-dependent color. If the precise details of
the original display device are known, it becomes possible to convert the device-dependent colors of a par-
ticular image to device-independent ones. Making simplifying assumptions, such as working with CRTs
(which are much easier than printers), al we need to know are the XY Z values of each primary color and the
CRT_gamma.

So why does PNG not store images in XY Z instead of RGB? Well, two reasons. First, storing images in
XY Z would require more hits of precision, which would make the files bigger. Second, al programs would
have to convert the image data before viewing it. Whether calibrated or not, all variants of RGB are close

72 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

enough that undemanding viewers can get by with simply displaying the data without color correction. By
storing calibrated RGB, PNG retains compatibility with existing programsthat expect RGB data, yet provides
enough information for conversion to XY Z in applications that need precise colors. Thus, we get the best of
both worlds.

What are chromaticity and luminance?

Chromaticity isan objective measurement of the color of an object, leaving aside the brightness information.
Chromaticity uses two parameters x and y, which are readily calculated from XY Z:

X1 (X+ Y+ 2)
Y/ (X+Y+2)

X
y

XY Z colors having the same chromaticity values will appear to have the same hue but can vary in absolute
brightness. Notice that x,y are dimensionless ratios, so they have the same values no matter what unitswe' ve
used for X,Y,Z.

TheY vaue of an XY Z color isdirectly proportional to its absolute brightness and is called the luminance of
the color. We can describe a color either by XY Z coordinates or by chromaticity x,y plus luminance Y. The
XY Z form has the advantage that it is linearly related to (linear, gamma=1.0) RGB color spaces.

How are computer monitor colorsdescribed?

The “white point” of amonitor is the chromaticity x,y of the monitor’s nomina white, that is, the color pro-
duced when R=G=B=maximum.

It's customary to specify monitor colors by giving the chromaticities of the individual phosphors R, G, and
B, plus the white point. The white point allows one to infer the relative brightnesses of the three phosphors,
which isn’t determined by their chromaticities alone.

Note that the absolute brightness of the monitor is not specified. For computer graphics work, we generally
don’t care very much about absol ute brightness levels. Instead of dealing with absolute XY Z values (in which
X,Y,Z are expressed in physical units of radiated power, such as candelas per square meter), it is convenient
towork in “relative XY Z” units, where the monitor’s nominal white is taken to have aluminance (Y) of 1.0.
Given thisassumption, it's simple to compute XY Z coordinates for the monitor’s white, red, green, and blue
from their chromaticity values.

Why does c HRMuse x,y rather than XY Z? Simply because that is how manufacturers print the information
intheir spec sheets! Usually, thefirst thing aprogram will do is convert the c HRMchromaticities into rel ative
XYZ space.

What can | dowith it?

If a PNG file has the gAMA and c HRMchunks, the source_ RGB values can be converted to XY Z. Thislets
you:

14. APPENDIX: COLOR TUTORIAL 73

e do accurate grayscale conversion (just usethe Y component)
e convert to RGB for your own monitor (to see the original colors)

e printtheimagein Level 2 PostScript with better color fidelity than asimple RGB to CMYK conversion
could provide

e calculate an optimal color palette
e pass the image data to a color management system

e €iC.

How do | convert from source RGB to XYZ?

Make afew simplifying assumptions first, like the monitor realy isjet black with no input and the guns don’t
interfere with one another. Then, given that you know the CIE XY Z values for each of red, green, and blue
for a particular monitor, you put them into amatrix m

Xr Xg Xb
m= Yr Yg Yb
Zr Zg Zb

Here we assume we are working with linear RGB floating point data in the range 0..1. If the gammais not
1.0, make it so on the floating point data. Then convert source RGB to XY Z by matrix multiplication:

X R
Y=mG
Z B

Inother words, X = Xr*R + Xg*G + Xb*B, and similarly for Y and Z. You can go the other way too:

R X
G=imyY
B Z

where i mistheinverse of the matrix m

What isa gamut?

The gamut of a device is the subset of visible colors which that device can display. (It has nothing to do
with gamma.) The gamut of an RGB device can be visuaized as a polyhedron in XY Z space; the vertices
correspond to the device's black, blue, red, green, magenta, cyan, yellow and white.

Different devices have different gamuts, in other words one device will be ableto display certain colors (usu-
aly highly saturated ones) that another device cannot. The gamut of a particular RGB device can be deter-
mined from its R, G, and B chromaticities and white point (the same values given in the c HRMchunk). The

74 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

gamut of a color printer is more complex and can only be determined by measurement. However, printer
gamuts are typically smaller than monitor gamuts, meaning that there can be many colors in a displayable
image that cannot physically be printed.

Converting image data from one device to another generally resultsin gamut mismatches — colorsthat can-
not be represented exactly on the destination device. The process of making the colors fit, which can range
from asimple clip to elaborate nonlinear scaling transformations, is termed gamut mapping. Theam isto
produce areasonable visual representation of the original image.

Further reading

References [COLOR-1] through [COLOR-5] provide more detail about color theory.

15 Appendix: Sample CRC Code

The following sample code represents a practical implementation of the CRC (Cyclic Redundancy Check)
employed in PNG chunks. (See dso 1SO 3309 [1SO-3309] or ITU-T V.42 [ITU-V42] for aforma specifica
tion.)

The sample codeisin the ANSI C programming language. Non C users may find it easier to read with these
hints:

&
Bitwise AND operator.
Bitwise exclusive-OR operator. (Caution: elsewhere in this document, ™ represents exponentiation.)
>>
Bitwise right shift operator. When applied to an unsigned quantity, as here, right shift inserts zeroes at
the left.
!
Logical NOT operator.
++
“n++" increments the variable n.
OxNNN

Ox introduces a hexadecimal (base 16) constant. Suffix L indicates along value (at least 32 bits).

15. APPENDIX: SAMPLE CRC CODE

/* Table of CRCs of all 8-bit messages. */
unsi gned | ong crc_tabl e[256] ;

/* Flag: has the table been conputed? Initially false. */
int crc_table conputed = O;

/* Make the table for a fast CRC. */
voi d make_crc_tabl e(voi d)
{

unsi gned | ong c;

int n, k;

for (n = 0; n < 256; n++) {
¢ = (unsigned long) n
for (k = 0; k < 8; k++) {
if (c &1)
c = 0xedb88320L ~ (c » 1);
el se
c =c » 1;

crc_table[n] = c;
}
crc_table conputed = 1;

}

/* Update a running CRC with the bytes buf[0..len-1]-the CRC
should be initialized to all 1's, and the transmitted val ue
is the 1's conplenent of the final running CRC (see the
crc() routine below)). */

unsi gned | ong update_crc(unsigned |l ong crc, unsigned char *buf,

int |en)
{
unsi gned long ¢ = crc;
int n;
if (!crc_tabl e _conputed)
make crc_table();
for (n =0; n < len; n+t+) {
c =crc_table[(c ™ buf[n]) & Oxff] ©~ (c » 8);
}
return c;
}

/* Return the CRC of the bytes buf[0..len-1]. */
unsi gned | ong crc(unsigned char *buf, int |en)

{
}

return update crc(OxffffffffL, buf, len) = OxfffffffflL;

75

76 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

16 Appendix: Online Resources

(This appendix is not part of the formal PNG specification.)

This appendix gives the locations of some Internet resources for PNG software developers. By the nature of
the Internet, the list isincomplete and subject to change.

Archive sites

The latest released versions of this document and related information can always be found at the PNG FTP
archivesite, ft p: //ft p. uu. net/ graphi cs/ png/ . The PNG specification isavailable in several for-
mats, including HTML, plain text, and PostScript.

Reference implementation and test images

A reference implementation in portable C is avalable from the PNG FTP archive site,
ftp://ftp.uu. net/graphics/png/src/. The reference implementation is freely usable in
all applications, including commercial applications.

Test images are available fromf t p: / / ft p. uu. net/ graphi cs/ png/ i mages/ .

Electronic mail

The maintainers of the PNG specification can be contacted by e-mail at png- i nf o@unet . uu. net or
a png- gr oup@3. org.

PNG home page

ThereisaWorld Wide Web home pagefor PNGat ht t p: / / quest . j pl . nasa. gov/ PNJ . This page
isacentral location for current information about PNG and PNG-related tools.

17 Appendix: Revision History

(This appendix is not part of the forma PNG specification.)

The PNG format has been frozen since the Ninth Draft of March 7, 1995, and all future changes are intended
to be backwards compatible. The revisions since the Ninth Draft are simply clarifications, improvementsin
presentation, and additions of supporting material.

On 1 October 1996, the PNG specification was approved as a W3C (World Wide Web Consortium) Recom-
mendation.

18. REFERENCES 77

At that time, it was awaiting publication as an Informational RFC.

Changes since the Tenth Draft of 5 May, 1995

18

Clarified meaning of a suggested-palette PLTE chunk in a truecolor image that uses transparency
Clarified exact semantics of sBI T and allowed sample depth scaling procedures

Clarified status of spacesint EXt chunk keywords

Distinguished private and public extension values in type and method fields

Added a“Creation Time” t EXt keyword

Macintosh representation of PNG specified

Added discussion of security issues

Added more extensive discussion of gammaand chromaticity handling, including tutorial appendixes
Clarified terminology, notably sample depth vs. bit depth

Added aglossary

Editing and reformatting

References

[COLOR-1]

Hall, Roy, Illumination and Color in Computer Generated Imagery. Springer-Verlag, New York, 1989.
ISBN 0-387-96774-5.

[COLOR-2]

Kasson, J., and W. Plouffe, “An Anaysis of Selected Computer Interchange Color Spaces’, ACM
Transactions on Graphics, vol 11 no 4 (1992), pp 373-405.

[COLOR-3]

Lilley, C., F. Lin, W.T. Hewitt, and T.L.J. Howard, Colour in Computer Graphics. CVCP, Sheffield,
1993. ISBN 1-85889-022-5.

Also available from

<URL: http://info.ncc.ac.uk/CAJ | TTI/ Col / col our _announce. ht m >

[COLOR-4]

Stone, M.C., W.B. Cowan, and J.C. Bestty, “ Color gamut mapping and the printing of digital images’,
ACM Transactions on Graphics, vol 7 no 3 (1988), pp 249-292.

78 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

[COLOR-5]

Travis, David, Effective Color Displays — Theory and Practice. Academic Press, London, 1991.
ISBN 0-12-697690-2.

[GAMMA-FAQ]

Poynton, C., “GammaFAQ".
<URL: htt p://wwu. i nf oranp. net/ % Epoynt on/ Poynt on- col our. ht m >

[1SO-3309]

International Organization for Standardization, “Information Processing Systems — Data Communi-
cation High-Level Data Link Control Procedure — Frame Structure”, 1S 3309, October 1984, 3rd Edi-
tion.

[1SO-8859]

International Organization for Standardization, “Information Processing — 8-bit Single-Byte Coded
Graphic Character Sets— Part 1. Latin Alphabet No. 17, 1S 8859-1, 1987.

Also see samplefiles at

ftp://ftp.uu. net/graphics/png/docunents/iso _8859-1.*

[ITU-BT709]

International Telecommunications Union, “Basic Parameter Valuesfor theHDTV Standard for the Stu-
dio and for International Programme Exchange’, ITU-R Recommendation BT.709 (formerly CCIR
Rec. 709), 1990.

[1TU-V42]

International Telecommunications Union, “Error-correcting Procedures for DCEs Using
Asynchronous-to-Synchronous Conversion”, ITU-T Recommendation V.42, 1994, Rev. 1.

[PAETH]

Paeth, A.W., “Image File Compression Made Easy”, in Graphics Gems I1, James Arvo, editor. Aca
demic Press, San Diego, 1991. I1SBN 0-12-064480-0.

[POSTSCRIPT]

Adobe Systems Incorporated, PostScript Language Reference Manual, 2nd edition. Addison-Wesley,
Reading, 1990. ISBN 0-201-18127-4.

[PNG-EXTENSIONS]

PNG Group, “PNG Specia-Purpose Public Chunks’. Available in severa formats from
ftp://ftp.uu. net/graphi cs/png/ docunent s/ pngext ensi ons. *

[RFC-1123]

Braden, R., Editor, “ Requirements for Internet Hosts— Application and Support”, STD 3, RFC 1123,
USC/Information Sciences I nstitute, October 1989.
<URL:ftp://ds.internic.net/rfc/rfcll23.txt>

19. CREDITS 79

[RFC-1521]

Borenstein, N., and N. Freed, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies’, RFC 1521, Bellcore, Innosoft,
September 1993.

<URL:ftp://ds.internic.net/rfc/rfcl521.txt>

[RFC-1590]

Postel, J., “Media Type Registration Procedure”, RFC 1590, USC/Information Sciences Ingtitute,
March 1994.
<URL:ftp://ds.internic.net/rfc/rfcl590.txt>

[RFC-1950]

Deutsch, P. and J-L. Gailly, “ZLIB Compressed Data Format Specification version 3.3", RFC 1950,
Aladdin Enterprises, May 1996.
<URL:ftp://ds.internic.net/rfc/rfcl950.txt>

[RFC-1951]

Deutsch, P, “DEFLATE Compressed Data Format Specification version 1.3”, RFC 1951, Aladdin En-
terprises, May 1996.
<URL:ftp://ds.internic.net/rfc/rfcl951.txt>

[SMPTE-170M]

Society of Motion Picture and Television Engineers, “Television — Composite Analog Video Signa
— NTSC for Studio Applications’, SMPTE-170M, 1994.

19 Credits

Editor

Thomas Boutell, boutell| @boutell.com

Contributing Editor

Tom Lane, tgl @sss.pgh.pa.us

Authors

Authors' names are presented in alphabetical order.
o Mark Adler, madler@alumni.caltech.edu

80 PNG (PORTABLE NETWORK GRAPHICS) SPECIFICATION

e Thomas Boutdll, boutell @boutell.com

e Christian Brunschen, cb@df.lth.se

e Adam M. Costello, amc@cs.berkeley.edu

e LeeDaniel Crocker, lee@piclab.com

e Andreas Dilger, adilger@enel.ucalgary.ca

e Oliver Fromme, fromme@rz.tu-clausthal .de
e Jean-loup Galilly, gzip@prep.ai.mit.edu

e Chris Herborth, chrish@gnx.com

e Alex Jakulin, Aleks.Jakulin@snet.fri.uni-lj.si
o Ned Kettler, kettler@cs.colostate.edu

e Tom Lane, tgl@sss.pgh.pa.us

e Alexander Lehmann, alex@hal.rhein-main.de
e ChrisLilley, chris@w3.org

¢ Dave Martindale, davem@cs.ubc.ca

e Owen Mortensen, 104707.650@compuserve.com
e Keith S. Pickens, ksp@swri.edu

¢ Robert P. Poole, lionboy@primenet.com

¢ Glenn Randers-Pehrson, glennrp@arl.mil or randeg@al umni.rpi.edu
¢ Greg Rodlofs, newt@pobox.com

¢ Willem van Schaik, willem@gintic.gov.sg

e Guy Schalnat

e Paul Schmidt, pschmidt@photodex.com

e Tim Wegner, 71320.675@compuserve.com

e Jeremy Wohl, jeremyw@anders.com

Theauthors wish to acknowledge the contributions of the Portable Network Graphics mailing list, the readers
of comp.graphics, and the members of the World Wide Web Consortium (W3C).

The Adam?7 interlacing scheme is not patented and it is not the intention of the originator of that scheme to
patent it. The scheme may be freely used by all PNG implementations. The name “Adam7”’ may be freely
used to describe interlace method 1 of the PNG specification.

19. CREDITS 81

Trademarks

GIF isaservice mark of CompuServe Incorporated. IBM PC is atrademark of International Business Ma
chines Corporation. Macintosh is a trademark of Apple Computer, Inc. Microsoft and MS-DOS are trade-
marks of Microsoft Corporation. PhotoCD isatrademark of Eastman K odak Company. PostScript and TIFF
aretrademarks of Adobe Systems Incorporated. SGI isatrademark of Silicon Graphics, Inc. X Window Sys-
tem is atrademark of the Massachusetts Institute of Technology.

COPYRIGHT NOTICE

Copyright (© 1996 by: Massachusetts Institute of Technology (MIT)

ThisW3C specification isbeing provided by the copyright holders under the following license. By abtaining,
using and/or copying this specification, you agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute this specification for any purpose and without fee or royalty is hereby
granted, provided that the full text of thisNOTICE appears on ALL copies of the specification or portions
thereof, including modifications, that you make.

THIS SPECIFICATION IS PROVIDED “AS IS AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAM-
PLE, BUT NOT LIMITATION, COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE
OR THAT THE USE OF THE SPECIFICATION WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. COPYRIGHT HOLDERS
WILL BEARNO LIABILITY FOR ANY USE OF THISSPECIFICATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the specification without specific, written prior permission. Title to copyright in this specification and any
associated documentation will at al times remain with copyright holders.

End of PNG Specification

